hope you're doing well . i tried counting green color row after another green colored row in the table below In [1]: df = pd.DataFrame([[green], [red], [red]], columns=['A'])
the code i tried to count greengreen:
for index,row in data.iterrows():
if finalData['Color'].loc[i]=='green' & finalData['Color'].loc[i 1]=='green':
greengreen =1
i =1
but it didn't work,hope you can help. note: i'm new to data science
CodePudding user response:
You can use:
# is the color green?
m = df['color'].eq('green')
# count the matches that precede another match
greengreen = (m&m.shift()).sum()
As a one-liner (python ≥ 3.8):
greengreen = ((m:=df['color'].eq('green'))&m.shift()).sum()
example input:
df = pd.DataFrame({'color': ['green', 'green', 'green', 'red', 'green', 'red', 'green', 'green']})
output: 3
CodePudding user response:
IIUC,
count = (df['Color'].eq('green') & df['Color'].shift().eq('green')).sum()
CodePudding user response:
data = {'col1': ['A','B','C','D'],\
'col2': ['green','green', 'red','green']}
df = pd.DataFrame(data)
df
index | col1 | col2 |
---|---|---|
0 | A | green |
1 | B | green |
2 | C | red |
3 | D | green |
df.col2.values
greengreen = 0
greenred = 0
redgreen = 0
for i in range(len(df.col2.values)):
if i < (len(df.col2.values)-1):
if df.col2.values[i] == 'green' and df.col2.values[i 1] == 'green':
greengreen = 1
elif df.col2.values[i] == 'green' and df.col2.values[i 1] == 'red':
greenred = 1
elif df.col2.values[i] == 'red' and df.col2.values[i 1] == 'green':
redgreen = 1
else:
print('?')
print(greengreen, greenred, redgreen)
1 1 1