I am trying to convert pandas data frame into json, with the help of for loop. I want custom formatting of my data frame in json. I have data in csv, and want to convert it into json file like below.
i tried to convert data frame to_json, then tried to replace index number with account number, but insted of replacing key only, my for loop replaced all "zeros" present in my code to account number.
{"12312312313": {
account_no: 12312312313, # To save acc number
account_type: 'saving' # account type
branch: BARB, #branch
branch_address: #address
ifsc: BARB000000, #ifsc
uidai: 123412341234, #aadhar_id
mobile_no: 8888888888, #communication medium
email: '[email protected]', #email
fname: "Raj",
mname: "Ramesh",
sname: "Rampal",
acc_balance: 132156465413513,
dob: "20/12/1999",
pan: "QWER123QER",
occupation: "Student",
address: "Mumbai-412321",
ac_open_date: 12/12/2012,
blood_group: "a-",
history:{
dd_mm_yyyy_hh_mm_ss:{
transition_id: 132132323213563513,
added: 13213,
withdrawn: 1231,
}
},
cards_allocated: {
credit:{
credit_card_type: "platinum",
credit_card_no: 1323213,
name_on_card: "raj ramesh rampal",
card_limit: 20000,
amount_used: 10000,
amount_to_pay: 0000.0,
card_issue_date: 12/12/2012,
card_exp_date: 11/12/2025,
cvv: 123123,
credit_card_password: 1234,
monthly_emi: 4225,
history:{
dd_mm_yyyy_hh_mm_ss:{
transition_id: 132132323213563513,
added: 13213,
withdrawn: 1231,
}
}
},
debit:{
debit_card_type: "visa",
debit_card_no: 1323213,
name_on_card: "raj ramesh rampal",
daily_debit_limit: 20000,
card_issue_date: 12/12/2012,
card_exp_date: 11/12/2025,
cvv: 123123,
debit_card_password: 1234,
history:{
dd_mm_yyyy_hh_mm_ss:{
transition_id: 132132323213563513,
added: 13213,
withdrawn: 1231,
}
},
}
}
Also i tried to add Transition history column but its not working.
**I am using this data to create ATM Machine Simulator using TKinter or PyQT5.**
CodePudding user response:
Here is an example, try the 'Split' option.
sample2=pd.DataFrame({'Client':['Bob','Sally', 'Bob', 'Doug', 'Sally'],
'Result':['Expired', 'Expired','Expired', 'Not Expired', 'Not Expired'],
'Account_Type':['Savings', 'Savings', 'Savings', 'Savings', 'Checking'],
'Occupation':['Student', 'Engineer', 'Doctor', 'Student', 'Engineer']})
df_json = sample2.set_index('Client').to_json(orient='split')
print(df_json)
{"columns":["Result","Account_Type","Occupation"],"index":["Bob","Sally","Bob","Doug","Sally"],"data":[["Expired","Savings","Student"],["Expired","Savings","Engineer"],["Expired","Savings","Doctor"],["Not Expired","Savings","Student"],["Not Expired","Checking","Engineer"]]}