Is there a way to get coeftest to report confidence intervals? Or a command that will calculate confidence intervals from coef results?
dummy data:
library(lmtest)
data("mtcars")
testmodel <- glm(am ~ vs, data = mtcars, family = quasibinomial(link = "logit"))
testcoef <- coeftest(testmodel)
testcoef
z test of coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) -0.69315 0.51640 -1.3423 0.1795
vs 0.69315 0.75593 0.9169 0.3592
CodePudding user response:
would that help?
library(lmtest)
data("mtcars")
testmodel <- glm(am ~ vs, data = mtcars, family = quasibinomial(link = "logit"))
testcoef <- coeftest(testmodel)
confint(testcoef)
coefci(testmodel)
CodePudding user response:
Following @Will, you could use cbind
to combine coeftest
with coefci
cbind(coeftest(testmodel), coefci(testmodel))
cbind(coeftest(testmodel), confint(testmodel)) ## profile CIs (more accurate)
Or use broom::tidy
:
library(broom)
tidy(testmodel, conf.int = TRUE) ## profile CIs (the only option)
If you have multiple models, it's convenient to use purrr::map_dfr
to combine the results:
data(mtcars)
m1 <- glm(am ~ vs, data = mtcars, family = quasibinomial(link = "logit"))
m2 <- update(m1, . ~ mpg)
(list(vs = m1, mpg = m2)
|> purrr::map_dfr(tidy, conf.int = TRUE, .id = "model")
)