My df looks like this: (There are dozens of other columns in the df but these are the three I am focused on)
Param Value Limit
A 1.50 1
B 2.50 1
C 2.00 2
D 2.00 2.5
E 1.50 2
I am trying to use pandas to calculate how many [Value] that are less than [Limit] per [Param], Hoping to get a list like this:
Param Count
A 1
B 1
C 1
D 0
E 0
I've tried with a few methods, the first being
value_count = df.loc[df['Value'] < df['Limit']].count()
but this just gives the full count per column in the df.
I've also tried groupby function which I think could be the correct idea, by creating a subset of the df with the chosen columns
df_below_limit = df[df['Value'] < df['Limit']]
df_below_limit.groupby('Param')['Value'].count()
This is nearly what I want but it excludes values below which I also need. Not sure how to go about getting the list as I need it.
CodePudding user response:
Assuming you want the count per Param, you can use:
out = df['Value'].ge(df['Limit']).groupby(df['Param']).sum()
output:
Param
A 1
B 2
C 1
D 0
E 0
dtype: int64
used input (with a duplicated row "B" for the example):
Param Value Limit
0 A 1.5 1.0
1 B 2.5 1.0
2 B 2.5 1.0
3 C 2.0 2.0
4 D 2.0 2.5
5 E 1.5 2.0
as DataFrame
df['Value'].ge(df['Limit']).groupby(df['Param']).sum().reset_index(name='Count')
# or
df['Value'].ge(df['Limit']).groupby(df['Param']).agg(Count='sum').reset_index()
output:
Param Count
0 A 1
1 B 2
2 C 1
3 D 0
4 E 0