I have a parquet file with multiple columns and out of those I have 2 columns which are JSON/Struct, but their type is string. There can be any number of array_elements present.
{
"addressline": [
{
"array_element": "F748DK’8U1P9’2ZLKXE"
},
{
"array_element": "’O’P0BQ04M-"
},
{
"array_element": "’fvrvrWEM-"
}
],
"telephone": [
{
"array_element": {
"locationtype": "8.PLT",
"countrycode": null,
"phonenumber": "000000000",
"phonetechtype": "1.PTT",
"countryaccesscode": null,
"phoneremark": null
}
}
]
}
How can I create a schema to handle these columns in PySpark?
CodePudding user response:
Treating the example you provided as string I have created this dataframe:
from pyspark.sql import functions as F, types as T
df = spark.createDataFrame([('{"addressline":[{"array_element":"F748DK’8U1P9’2ZLKXE"},{"array_element":"’O’P0BQ04M-"},{"array_element":"’fvrvrWEM-"}],"telephone":[{"array_element":{"locationtype":"8.PLT","countrycode":null,"phonenumber":"000000000","phonetechtype":"1.PTT","countryaccesscode":null,"phoneremark":null}}]}',)], ['c1'])
This is a schema to be applied to this column:
schema = T.StructType([
T.StructField('addressline', T.ArrayType(T.StructType([
T.StructField('array_element', T.StringType())
]))),
T.StructField('telephone', T.ArrayType(T.StructType([
T.StructField('array_element', T.StructType([
T.StructField('locationtype', T.StringType()),
T.StructField('countrycode', T.StringType()),
T.StructField('phonenumber', T.StringType()),
T.StructField('phonetechtype', T.StringType()),
T.StructField('countryaccesscode', T.StringType()),
T.StructField('phoneremark', T.StringType()),
]))
])))
])
Results providing the schema to the from_json
function:
df = df.withColumn('c1', F.from_json('c1', schema))
df.show()
# -------------------------------------------------------------------------------------------------------
# |c1 |
# -------------------------------------------------------------------------------------------------------
# |{[{F748DK’8U1P9’2ZLKXE}, {’O’P0BQ04M-}, {’fvrvrWEM-}], [{{8.PLT, null, 000000000, 1.PTT, null, null}}]}|
# -------------------------------------------------------------------------------------------------------
df.printSchema()
# root
# |-- c1: struct (nullable = true)
# | |-- addressline: array (nullable = true)
# | | |-- element: struct (containsNull = true)
# | | | |-- array_element: string (nullable = true)
# | |-- telephone: array (nullable = true)
# | | |-- element: struct (containsNull = true)
# | | | |-- array_element: struct (nullable = true)
# | | | | |-- locationtype: string (nullable = true)
# | | | | |-- countrycode: string (nullable = true)
# | | | | |-- phonenumber: string (nullable = true)
# | | | | |-- phonetechtype: string (nullable = true)
# | | | | |-- countryaccesscode: string (nullable = true)
# | | | | |-- phoneremark: string (nullable = true)