I would like to count the combinations of values (pets
) per group (user
). The code below gives the desired result. However, I'm looking for a more 'pandamic' way, maybe by using the crosstab
method. Any suggestions for a less verbose solution?
import pandas as pd
import numpy as np
import itertools
df1 = pd.DataFrame({'user':['Jane', 'Matthew', 'Emily'], 'pets':[['dog', 'cat', 'lizard'], ['dog', 'spider'], ['dog', 'cat', 'monkey']]}).explode('pets')
combinations = []
for g in df1.groupby('user'): combinations = [x for x in itertools.combinations(g[1].pets, 2)]
df2 = pd.DataFrame(np.zeros((df1.pets.nunique(), df1.pets.nunique()), dtype=int), columns=df1.pets.unique(), index=df1.pets.unique())
for x in combinations:
df2.at[x[0], x[1]] = 1
df2.at[x[1], x[0]] = 1
print(df2)
Result:
dog cat lizard spider monkey
dog 0 2 1 1 1
cat 2 0 1 0 1
lizard 1 1 0 0 0
spider 1 0 0 0 0
monkey 1 1 0 0 0
CodePudding user response:
Use DataFrame.merge
with crosstab
:
df = df1.merge(df1, on='user')
df = pd.crosstab(df.pets_x, df.pets_y).rename_axis(index=None, columns=None)
print(df)
cat dog lizard monkey spider
cat 2 2 1 1 0
dog 2 3 1 1 1
lizard 1 1 1 0 0
monkey 1 1 0 1 0
spider 0 1 0 0 1
If need set values in diagonal to 0
add numpy.fill_diagonal
:
df = df1.merge(df1, on='user')
df = pd.crosstab(df.pets_x, df.pets_y).rename_axis(index=None, columns=None)
np.fill_diagonal(df.to_numpy(), 0)
print (df)
cat dog lizard monkey spider
cat 0 2 1 1 0
dog 2 0 1 1 1
lizard 1 1 0 0 0
monkey 1 1 0 0 0
spider 0 1 0 0 0
import itertools
combinations = []
for g in df1.groupby('user'): combinations = [x for x in itertools.combinations(g[1].pets, 2)]
df2 = pd.DataFrame(np.zeros((df1.pets.nunique(), df1.pets.nunique()), dtype=int), columns=df1.pets.unique(), index=df1.pets.unique())
for x in combinations:
df2.at[x[0], x[1]] = 1
df2.at[x[1], x[0]] = 1
print(df2)
dog cat lizard spider monkey
dog 0 2 1 1 1
cat 2 0 1 0 1
lizard 1 1 0 0 0
spider 1 0 0 0 0
monkey 1 1 0 0 0