Home > Mobile >  offsetting row values using pandas.dataframe.shift()
offsetting row values using pandas.dataframe.shift()

Time:07-13

Iam having a data frame similar to the one below

absences_df= pd.DataFrame({'PersonNumber' : ['1234','1234','1234','5678', '5678', '5678', '997','998','998'],
                   'Start':['2022-03-07','2022-03-08','2022-03-09','2022-03-09','2022-03-10','2022-03-11','2022-03-07','2022-03-07','2022-03-08'],
                   'End':['2022-03-07','2022-03-08','2022-03-09','2022-03-09','2022-03-10','2022-03-11','2022-03-07','2022-03-07','2022-03-08'], 
                   'hours' : ['1','1', '1','1','2','2','3.5','1','2']
                  })

absences_df:

absences dataframe

I am having another dataframe like the one below:

input_df = pd.DataFrame({'PersonNumber' : ['1234','5678','997','998'],
                            'W03' : ['1.0','11.0','1.0','22.0'],
                            'W3_5' : ['2.0','12.0','2.0','23.0'],
                            'W04' : ['3.0','13.0','3.0','24.0'],
                            'W4_5' : ['4.0','14.0','4.0','25.0'],
                            'W05' : ['5.0','15.0','5.0','26.0'],
                            'W5_5' : ['0.0','16.0','6.0','27.0'],
                            'W06' : ['0.0','17.0','7.0','28.0'],
                            'W6_5' : ['6.0','18.0','8.0','29.0'],
                            'W07' : ['7.0','19.0','9.0','0.0'],
                            'W7_5' : ['8.0','0.0','10.0','0.0'],
                            'W08' : ['9.0','0.0','11.0','31.0'],
                            'W8_5' : ['10.0','0.0','12.0','32.0'],
                            'W09' : ['11.0','22.0','13.0','34.0'],
                            
                  })

input_df :

values dataframe

i wanted to offset the row values in my second data frame(input_df ) based on the value that is present "hours" column in my first data frame(absences_df). After offsetting, the last value should be repeated for the remaining columns.

I wanted an output similar to the one below.

output_df = pd.DataFrame({'PersonNumber' : ['1234','5678','997','998'],
                            'W03' : ['0.0','0.0','7.0','27.0'],
                            'W3_5' : ['0.0','0.0','8.0','28.0'],
                            'W04' : ['6.0','0.0','9.0','29.0'],
                            'W4_5' : ['7.0','22.0','10.0','0.0'],
                            'W05' : ['8.0','22.0','11.0','0.0'],
                            'W5_5' : ['9.0','22.0','12.0','31.0'],
                            'W06' : ['10.0','22.0','13.0','32.0'],
                            'W6_5' : ['11.0','22.0','13.0','34.0'],
                            'W07' : ['11.0','22.0','13.0','34.0'],
                            'W7_5' : ['11.0','22.0','13.0','34.0'],
                            'W08' : ['11.0','22.0','13.0','34.0'],
                            'W8_5' : ['11.0','22.0','13.0','34.0'],
                            'W09' : ['11.0','22.0','13.0','34.0']
                  })

Final_df:

final output df

Simply put,

1)Employee 1234 is absent for 3 days and the sum of his each day hours is 3(1 1 1). So 3(total hours sum) 2(common for every one) = 5. So offset starts from W5_5

2)Employee 5678 is absent for 3 days and the sum of his each day hours is 5(1 2 2). So 5(total hours sum) 2(common for every one) = 7. So the offset starts from W7_5

3)Employee 997 is absent for 1 day and the sum of his each day hours is 3.5. So 3.5(total sum) 2(common for every one) = 5.5. So offset starts from W06

4)Employee 998 is absent for 2 days and the sum of his each day hours is 3(1 2). So 3(total hours sum) 2(common for every one) = 5. So offset starts from W5_5

I have tried using shift() and a few other ways, but nothing helped me.

Posting what i have tried here

A=absences_df['PersonNumber'].value_counts()
dfNew_employee=[]
dfNew_repeat_time=[]
dfNew_Individual_hrs=[]
df_new_average_hours =[]
dfNew_total_hrs=[]

for i in A.index:
    individual_employee=absences_df.loc[(absences_df['PersonNumber'] == i)]
    hr_per_day=individual_employee['Duration'].iloc[0]
    dfNew_employee.append(i)
    dfNew_repeat_time.append(A[i])
    dfNew_Individual_hrs.append(hr_per_day)
    dfNew_total_hrs.append(str(sum(individual_employee['Duration']) 2))
    df_new_average_hours.append(str((int(hr_per_day)*int(A[i])) 2))
    print('employee id:',i,'; Repeated:',A[i],';  Hours=',hr_per_day,';  Total hours=',sum(individual_employee['Duration']) 2)

main_cnt = 0
b = weekly_penality_df.copy()
df_final = pd.DataFrame(columns=b.columns)

for k in dfNew_employee:
    i=dfNew_total_hrs[main_cnt]
    i=int(float(i)*2)-5
    # if main_cnt > 0:
    #     b = a3.copy()
    print(i)
    a = b[b['PersonNumber'] == str(k)]
    if a.shape[0] == 0:
        print(main_cnt)
        continue
    a_ref_index = a.index.values.astype(int)[0]
    #a_ref_index
    a1 = b[["PersonNumber"]].copy()
    a2 = b.copy()
    a2.drop(['PersonNumber'], axis=1, inplace = True)
    a21 = a2.iloc[[a_ref_index],:].copy()
    a21.dropna(axis =1, inplace = True)
    a21_last_value = a21[a21.columns[-1]]
    a2.iloc[[a_ref_index],:] = a2.iloc[[a_ref_index],:].shift(i*-1, axis = 1, fill_value =float(a21_last_value))
    
    a3=pd.concat([a1, a2], axis=1)
    temp = a3[a3['PersonNumber'] == str(k)]
    #df_final = df_final.append(temp, ignore_index=True)
    b.loc[temp.index, :] = temp[:]
    a3 = a3.reset_index(drop=True)
    
    main_cnt=main_cnt 1

Please help me with any Easier/simplest solution.

Thanks in advance

CodePudding user response:

This is the function to get the exact column name from absences_df

def get_offset_amount(person_number):
    #calculating the sum of all the absent hour for a particular person
    offset=absences_df[absences_df['PersonNumber']==person_number]['hours'].astype(float).sum()
    #if sum is zero than no change in the output dataframe 
    if offset == 0:
        return 0
    # Adding 2 as per your requerment 
    offset =2
    #creating the column name 
    if offset.is_integer():
        column_name =  'W{offset}_5'.format(offset= int(offset))
    else:
        column_name =  'W0{offset}'.format(offset= int(offset 1))
    #Fetching the column number using the column name just created
    return input_df.columns.tolist().index(column_name)

Iterating the input DF and creating the offset list. Using the same shift function from your try.

ouput_lst = []

for person_number in input_df['PersonNumber']:
    shift_amount = get_offset_amount(person_number)
    last_value = input_df[input_df['PersonNumber']==person_number].iloc[0,-1]

    lst = input_df[input_df['PersonNumber']==person_number] \
                                .shift(periods = shift_amount*-1,axis = 1,fill_value = last_value) \
                                .iloc[0,:].tolist()[:-1]
    new_lst = [person_number, *lst]
    ouput_lst.append(new_lst)

output_df = pd.DataFrame(ouput_lst)
output_df.columns = input_df.columns 

Ouput_df

  PersonNumber   W03  W3_5   W04  W4_5   W05  W5_5   W06  W6_5   W07  W7_5  \
0         1234   0.0   0.0   6.0   7.0   8.0   9.0  10.0  11.0  11.0  11.0   
1         5678   0.0   0.0   0.0  22.0  22.0  22.0  22.0  22.0  22.0  22.0   
2          997   7.0   8.0   9.0  10.0  11.0  12.0  13.0  13.0  13.0  13.0   
3          998  27.0  28.0  29.0   0.0   0.0  31.0  32.0  34.0  34.0  34.0   

    W08  W8_5   W09  
0  11.0  11.0  11.0  
1  22.0  22.0  22.0  
2  13.0  13.0  13.0  
3  34.0  34.0  34.0   
  • Related