I want to combine multiple columns of a Pandas DataFrame
into a single column of lists, such that each list does not contain duplicate values and does not contain null values.
So, for example, in the data frame below, columns A
, B
and C
are combined into column D
:
A B C D
0 "KFC" NaN "KFC" ["KFC"]
1 NaN "Mandai Zoo" "Singapore Zoo" ["Mandai Zoo", "Singapore Zoo"]
2 "Tampines Mall" NaN NaN ["Tampines Mall"]
The best I could come up of this was a combination of this and this:
df['D'] = df[['A', 'B', 'C']].values.tolist()
df['D'] = df['D'].map(set).tolist()
which would give me this:
A B C D
0 "KFC" NaN "KFC" ["KFC", NaN]
1 NaN "Mandai Zoo" "Singapore Zoo" [NaN, "Mandai Zoo", "Singapore Zoo"]
2 "Tampines Mall" NaN NaN ["Tampines Mall", NaN]
But that still leaves the NaN
values in the list.
CodePudding user response:
You could use pd.dropna
before using pd.Series.unique
along axis=1
df['D'] = df.apply(lambda row: row.dropna().unique(), axis=1)
print(df)
A B C D
0 KFC NaN KFC [KFC]
1 NaN Mandai Zoo Singapore Zoo [Mandai Zoo, Singapore Zoo]
2 Tampines Mall NaN NaN [Tampines Mall]
CodePudding user response:
Use:
df[['Name', 'Year', 'Date']].apply(lambda x: [y for y in set(x) if pd.notna(y)], axis=1)
This just holds values if they are not nan
s.
CodePudding user response:
Because two NaN
values are not equal you can use [x for x in my_list if x==x]
to remove NaN
values:
df = pd.DataFrame({'A': ["KFC", np.nan, "Tampines Mall"], 'B': [np.nan, "Mandai Zoo", np.nan], 'C': ["KFC", "Singapore Zoo", np.nan]}).
df.assign(D = lambda df: [[z for z in x if z==z] for x in [set(l) for l in df.values.tolist()]])
Result:
A B C D
0 KFC NaN KFC [KFC]
1 NaN Mandai Zoo Singapore Zoo [Mandai Zoo, Singapore Zoo]
2 Tampines Mall NaN NaN [Tampines Mall]