I have a df with several columns, and I'd like to rank them. I can do them one at a time like this:
iris.ranked <-
iris %>%
arrange(Sepal.Length) %>%
mutate(Sepal.Length = rank(Sepal.Length))
But there are lots of columns...and this is clunky. I'd rather feed a list of columns and rank them all in one code chunk. I was thinking something like this but not working...
iris.ranked.all <-
iris %>%
mutate_at(
c('Sepal.Length',
'Sepal.Width',
'Petal.Width',
'Petal.Length'),
function(x) arrange(x) %>% rank()
)
CodePudding user response:
Use mutate(across())
from dplyr
:
library(dplyr)
iris |>
mutate(
across(
Sepal.Length:Petal.Width,
rank,
.names = "rank_{.col}")
)
# # A tibble: 150 x 9
# Sepal.Length Sepal.Width Petal.Length Petal.Width Species rank_Sepal.Length rank_Sepal.Width rank_Petal.Length rank_Petal.Width
# <dbl> <dbl> <dbl> <dbl> <fct> <dbl> <dbl> <dbl> <dbl>
# 1 5.1 3.5 1.4 0.2 setosa 37 128. 18 20
# 2 4.9 3 1.4 0.2 setosa 19.5 70.5 18 20
# 3 4.7 3.2 1.3 0.2 setosa 10.5 101 8 20
# 4 4.6 3.1 1.5 0.2 setosa 7.5 89 31 20
# 5 5 3.6 1.4 0.2 setosa 27.5 134. 18 20
# 6 5.4 3.9 1.7 0.4 setosa 49.5 146. 46.5 45
# 7 4.6 3.4 1.4 0.3 setosa 7.5 120. 18 38
# 8 5 3.4 1.5 0.2 setosa 27.5 120. 31 20
# 9 4.4 2.9 1.4 0.2 setosa 3 52.5 18 20
# 10 4.9 3.1 1.5 0.1 setosa 19.5 89 31 3
# # ... with 140 more rows
Or if in fact you want to overwrite the columns as your question suggests, omit the .names
argument:
iris |>
mutate(
across(
Sepal.Length:Petal.Width,
rank)
)