Home > Mobile >  split delimited column into new columns in pyspark dataframe
split delimited column into new columns in pyspark dataframe

Time:07-28

need to split the delimited(~) column values into new columns dynamically. Thie input s a dataframe and column name list. We are trying to solve using spark datfarame functions. Please help.

Input:

|Raw_column_name|
|1~Ram~1000~US|
|2~john~2000~UK|
|3~Marry~7000~IND|

col_names=[id,names,sal,country]

output:
id | names | sal | country
1 | Ram | 1000 | US
2 | joh n| 2000 | UK
3 | Marry | 7000 | IND 

CodePudding user response:

We can use split() and then use the resulting array's elements to create columns.

data_sdf. \
    withColumn('raw_col_split_arr', func.split('raw_column_name', '~')). \
    select(func.col('raw_col_split_arr').getItem(0).alias('id'),
           func.col('raw_col_split_arr').getItem(1).alias('name'),
           func.col('raw_col_split_arr').getItem(2).alias('sal'),
           func.col('raw_col_split_arr').getItem(3).alias('country')
           ). \
    show()

#  --- ----- ---- ------- 
# | id| name| sal|country|
#  --- ----- ---- ------- 
# |  1|  Ram|1000|     US|
# |  2| john|2000|     UK|
# |  3|Marry|7000|    IND|
#  --- ----- ---- ------- 

In case the use case is extended to be a dynamic list of columns.

col_names = ['id', 'names', 'sal', 'country']

data_sdf. \
    withColumn('raw_col_split_arr', func.split('raw_column_name', '~')). \
    select(*[func.col('raw_col_split_arr').getItem(i).alias(k) for i, k in enumerate(col_names)]). \
    show()

#  --- ----- ---- ------- 
# | id|names| sal|country|
#  --- ----- ---- ------- 
# |  1|  Ram|1000|     US|
# |  2| john|2000|     UK|
# |  3|Marry|7000|    IND|
#  --- ----- ---- ------- 

CodePudding user response:

Another option is from_csv() function. The only thing that needs to be defined is schema:

from pyspark.sql.functions import from_csv, col

df = spark.createDataFrame([('1~Ram~1000~US',), ('2~john~2000~UK',), ('3~Marry~7000~IND',)], ["Raw_column_name"])
df.show()

schema = "id int, names string, sal string, country string"
options = {'sep': '~'}
df2 = (df
       .select(from_csv(col('Raw_column_name'), schema, options).alias('cols'))
       .select(col('cols.*'))
       )
df2.show()
  • Related