I have a column of years from the sunspots dataset.
I want to convert column 'year' in integer e.g. 1992 to datetime format then find the time delta and eventually compute total seconds (cumulative) to represent the time index column of a time series.
I am trying to use the following code but I get the error
TypeError: dtype datetime64[ns] cannot be converted to timedelta64[ns]
sunspots_df['year'] = pd.to_timedelta(pd.to_datetime(sunspots_df['year'], format='%Y') ).dt.total_seconds()
CodePudding user response:
pandas.Timedelta
"[r]epresents a duration, the difference between two dates or times." So you're trying to get Python to tell you the difference between a particular datetime and...nothing. That's why it's failing.
If it's important that you store your index this way (and there may be better ways), then you need to pick a start datetime and compute the difference to get a timedelta
.
For example, this code...
import pandas as pd
df = pd.DataFrame({'year': [1990,1991,1992]})
diff = (pd.to_datetime(df['year'], format='%Y') - pd.to_datetime('1990', format='%Y'))\
.dt.total_seconds()
...returns a series whose values are seconds from January 1st, 1990. You'll note that it doesn't invoke pd.to_timedelta()
, because it doesn't need to: the result of the subtraction is automatically a pd.timedelta
column.