I have the following numpy.ndarray
:
testArr:
array([[ 2.55053788e-01, 6.25406146e-01, 1.19271643e-01,
2.68359261e-04],
[ 2.59611636e-01, 0.19562805e-01, 1.20518960e-01,
3.06535745e-01],
[ 8.52524495e-01, 5.24317825e-01, 1.22851081e-01,
3.06610862e-04],
[ 2.55068243e-01, 6.24345124e-01, 1.20263465e-01,
3.23178538e-04],
[ 2.46678621e-01, 6.29301071e-01, 1.23693809e-01,
3.26490292e-04]], dtype=float32)
If I do testVec = np.argmax(testArr)
, I get a single number. How can I get a vector of 0, 1 or 2, depending on the maximum value in each row of 2D array testArr
?
Expected output:
[1, 3, 0, 1, 1]
CodePudding user response:
If you give the documentation
a look, you'll see there is an axis
parameter which allows you to choose along which axis you want to perform the operation. From the docs:
Returns the indices of the maximum values along an axis.
Int this case, you want:
np.argmax(a, axis=1)
# array([1, 3, 0, 1, 1], dtype=int64)
CodePudding user response:
By default, np.argmax gives you the index of the maximum value in the flattened array. To get the maximum along a single dimension (for example, the maximum value in each row), you have to specify the keyword argument axis
. This has to be an integer: 0 for the columns, 1 for the rows. (Or any integer up to n-1 if your array has n dimensions.)
import numpy as np
testArr = np.array([[ 2.55053788e-01, 6.25406146e-01, 1.19271643e-01,
2.68359261e-04],
[ 2.59611636e-01, 0.19562805e-01, 1.20518960e-01,
3.06535745e-01],
[ 8.52524495e-01, 5.24317825e-01, 1.22851081e-01,
3.06610862e-04],
[ 2.55068243e-01, 6.24345124e-01, 1.20263465e-01,
3.23178538e-04],
[ 2.46678621e-01, 6.29301071e-01, 1.23693809e-01,
3.26490292e-04]], dtype=np.float32)
np.argmax(testArr, axis=1)
>>> array([1, 3, 0, 1, 1])