I have a dataset like this:
df <- data.frame(A=c(1,1,1,2,2,2), B=c(3,3,3,6,6, 6), C=c(2,3,9,12,2, 6), D=c("a1", "a2", "a3", "a1", "a2", "a3"))
and i want a dataset like this:
df2 <- data.frame(a1=c(2,12), a2=c(3, 2), a3=c(9, 6), B=c(3,6))
I try this function but it doesn't work:
df_new <- df %>%
mutate(B = if_else(B == 1, "A", "B")) %>%
group_by(B) %>%
mutate(var = paste0("V",row_number())) %>%
pivot_wider(id_cols = B, names_from = var, values_from = A) %>%
rename(row_name = B)
How can I solve?
CodePudding user response:
You can use pivot_wider
. To keep the column "B", use unused_fn
with a summarizing function (here, mean
, but it could also be first
, min
, max
...).
library(tidyr)
df %>%
pivot_wider(A, names_from = D, values_from = C, unused_fn = mean)
A a1 a2 a3 B
1 1 2 3 9 3
2 2 12 2 6 6
CodePudding user response:
data.table provides a nice function dcast (pass from reahspe2) to make this happen:
library(data.table)
dcast(df, A B ~ D, value.var = "C")
A B a1 a2 a3
1 1 3 2 3 9
2 2 6 12 2 6
Read this vignette if interested