I have a function that computes a certain object from a given parameter (say, an important node from a graph). Now, when calculating such an object, the function might allocate some memory. Sometimes I want the function to just return the result, and sometimes to return the result plus the memory used to compute it.
I typically solve this binary case like this:
enum class what {
what1, // return, e.g., just an int
what2 // return, e.g., a std::pair<int, std::vector<int>>
};
template <what w>
std::conditional_t<w == what::what1, int, std::pair<int, std::vector<int>>>
calculate_something(const param& p) { ... }
I would like to generalize the solution above to longer enumerations
enum class list_whats {
what1,
what2,
what3,
what4,
what5
};
One possible solution is to nest as many std::conditional_t
as needed
template <list_whats what>
std::conditional_t<
what == list_whats::what1,
int,
std::conditional_t<
what == list_whats::what2,
float,
....
>
>
>
calculate_something(const param& p) { ... }
But this is cumbersome and perhaps not too elegant.
Does anyone know how to do this in C 17?
CodePudding user response:
I don't think you should use std::conditional
at all to solve your problem. If I get this right, you want to use a template parameter to tell your function what to return. The elegant way to do this could look something like this:
#include <vector>
enum class what { what1, what2 };
template <what W>
auto compute() {
if constexpr (W == what::what1) {
return 100;
}
if constexpr (W == what::what2) {
return std::pair{100, std::vector<int>{}};
}
}
auto main() -> int {
[[maybe_unused]] const auto as_int = compute<what::what1>();
[[maybe_unused]] const auto as_pair = compute<what::what2>();
}
You can also use template specialization if you prefer another syntax:
template <what W>
auto compute();
template <>
auto compute<what::what1>() {
return 100;
}
template <>
auto compute<what::what2>() {
return std::pair{100, std::vector<int>{}};
}
CodePudding user response:
I found a possible solution that nests two structs: the first takes a list of Boolean values to indicate which type should be used, and the nested struct takes the list of possible types (see conditional_list
in the example code below -- the nested structs were inspired by this answer). But perhaps it's not elegant enough. I'm wondering if there is a possible solution of the form
std::conditional_list<
..., // list of Boolean values, (of any length!)
... // list of types (list that should be as long as the first)
>::type
My proposal
#include <type_traits>
#include <iostream>
#include <vector>
// -----------------------------------------------------------------------------
template<auto A, auto... ARGS>
constexpr auto sum = A sum<ARGS...>;
template<auto A>
constexpr auto sum<A> = A;
// -----------------------------------------------------------------------------
template <bool... values>
static constexpr bool exactly_one_v = sum<values...> == 1;
// -----------------------------------------------------------------------------
template <bool... values>
struct which {
static_assert(exactly_one_v<values...>);
template <std::size_t idx, bool v1, bool... vs>
struct _which_impl {
static constexpr std::size_t value =
(v1 ? idx : _which_impl<idx 1, vs...>::value);
};
template <std::size_t idx, bool v>
struct _which_impl<idx, v> {
static constexpr std::size_t value = (v ? idx : idx 1);
};
static constexpr std::size_t value = _which_impl<0, values...>::value;
};
template <bool... conds>
static constexpr std::size_t which_v = which<conds...>::value;
// -----------------------------------------------------------------------------
template <std::size_t ith_idx, typename... Ts>
struct ith_type {
template <std::size_t cur_idx, typename t1, typename... ts>
struct _ith_type_impl {
typedef
std::conditional_t<
ith_idx == cur_idx,
t1,
typename _ith_type_impl<cur_idx 1, ts...>::type
>
type;
};
template <std::size_t cur_idx, typename t1>
struct _ith_type_impl<cur_idx, t1> {
typedef
std::conditional_t<ith_idx == cur_idx, t1, std::nullptr_t>
type;
};
static_assert(ith_idx < sizeof...(Ts));
typedef typename _ith_type_impl<0, Ts...>::type type;
};
template <std::size_t ith_idx, typename... ts>
using ith_type_t = typename ith_type<ith_idx, ts...>::type;
// -----------------------------------------------------------------------------
template <bool... conds>
struct conditional_list {
template <typename... ts>
struct good_type {
static_assert(sizeof...(conds) == sizeof...(ts));
typedef ith_type_t<which_v<conds...>, ts...> type;
};
};
// -----------------------------------------------------------------------------
enum class list_whats {
what1,
what2,
what3,
what4,
what5,
};
template <list_whats what>
typename conditional_list<
what == list_whats::what1,
what == list_whats::what2,
what == list_whats::what3,
what == list_whats::what4,
what == list_whats::what5
>::template good_type<
int,
float,
double,
std::string,
std::vector<int>
>::type
return_something() noexcept {
if constexpr (what == list_whats::what1) { return 1; }
if constexpr (what == list_whats::what2) { return 2.0f; }
if constexpr (what == list_whats::what3) { return 3.0; }
if constexpr (what == list_whats::what4) { return "42"; }
if constexpr (what == list_whats::what5) { return {1,2,3,4,5}; }
}
int main() {
auto s1 = return_something<list_whats::what1>();
s1 = 3;
auto s2 = return_something<list_whats::what2>();
s2 = 4.0f;
auto s3 = return_something<list_whats::what3>();
s3 = 9.0;
auto s4 = return_something<list_whats::what4>();
s4 = "qwer";
auto s5 = return_something<list_whats::what5>();
s5[3] = 25;
}
CodePudding user response:
An alternative to working only with types is to write a function that returns the specific type, or an identity<type>
. It's sometimes more readable. Here is an example:
// if you don't have it in std
template<typename T>
struct identity {
using type = T;
};
enum class what {
what1,
what2,
what3
};
template<what w>
auto return_type_for_calc() {
if constexpr (w == what::what1) {
return identity<int>();
} else if constexpr (w==what::what2) {
return identity<double>();
} else {
return identity<float>();
}
}
template<what w>
decltype(return_type_for_calc<w>())
calculate_something()
{
return {};
}
int main() {
calculate_something<what::what1>();
calculate_something<what::what2>();
return 0;
}
CodePudding user response:
Here's my approach:
what_pair
is a pair that corresponds one enum to one type.what_type_index
accepts a enum and astd::tuple<what_pair<...>...>
and searches the tuple map where the enums are equal and returnsindex
. It returns maximumstd::size_t
value, if no match was found.what_type
is the final type, it is the tuple element at the found position. The program won't compile when the index isstd::size_t
max value because of invalidstd::tuple
access.
template<what W, typename T>
struct what_pair {
constexpr static what w = W;
using type = T;
};
template<what w, typename tuple_map>
constexpr auto what_type_index() {
std::size_t index = std::numeric_limits<std::size_t>::max();
auto search_map = [&]<std::size_t... Ints>(std::index_sequence<Ints...>) {
((std::tuple_element_t<Ints, tuple_map>::w == w ? (index = Ints) : 0), ...);
};
search_map(std::make_index_sequence<std::tuple_size_v<tuple_map>>());
return index;
}
template<what w, typename tuple_map>
using what_type = typename
std::tuple_element_t<what_type_index<w, tuple_map>(), tuple_map>::type;
and this is the example usage:
int main() {
using what_map = std::tuple<
what_pair<what::what1, int>,
what_pair<what::what2, float>,
what_pair<what::what3, double>,
what_pair<what::what4, std::string>,
what_pair<what::what5, std::vector<int>>>;
static_assert(std::is_same_v<what_type<what::what1, what_map>, int>);
static_assert(std::is_same_v<what_type<what::what2, what_map>, float>);
static_assert(std::is_same_v<what_type<what::what3, what_map>, double>);
static_assert(std::is_same_v<what_type<what::what4, what_map>, std::string>);
static_assert(std::is_same_v<what_type<what::what5, what_map>, std::vector<int>>);
//compilation error, because 'what6' wasn't specified in the 'what_map'
using error = what_type<what::what6, what_map>;
}