I have a dataframe with a column of datetimes, a column of floats, and a column of integers like this:
┌─────────────────────────┬───────────┬─────────────┐
│ time ┆ NAV_DEPTH ┆ coarse_ints │
│ --- ┆ --- ┆ --- │
│ datetime[ms] ┆ f64 ┆ i64 │
╞═════════════════════════╪═══════════╪═════════════╡
│ 2019-07-21 23:25:02.737 ┆ 3.424 ┆ 0 │
├╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌╌┤
│ 2019-07-21 23:25:32.745 ┆ 2.514 ┆ 0 │
├╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌╌┤
│ 2019-07-21 23:26:02.753 ┆ 2.514 ┆ 0 │
├╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌╌┤
│ 2019-07-21 23:26:32.668 ┆ 2.323 ┆ 0 │
├╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌╌┤
│ ... ┆ ... ┆ ... │
├╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌╌┤
│ 2019-07-23 21:24:16.383 ┆ 3.17 ┆ 689 │
├╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌╌┤
│ 2019-07-23 21:24:46.390 ┆ 3.213 ┆ 689 │
├╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌╌┤
│ 2019-07-23 21:25:16.396 ┆ 3.361 ┆ 689 │
├╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌╌┤
│ 2019-07-23 21:25:46.402 ┆ 3.403 ┆ 690 │
The integer column serves to split the dataset up into sequential groups of 8 samples for averaging. I would like to perform a groupby on the integer column and get the mean depth and datetime for each integer. It works with median
df.groupby('coarse_ints').median()
┌─────────────┬─────────────────────────┬───────────┐
│ coarse_ints ┆ time ┆ NAV_DEPTH │
│ --- ┆ --- ┆ --- │
│ i64 ┆ datetime[ms] ┆ f64 │
╞═════════════╪═════════════════════════╪═══════════╡
│ 128 ┆ 2019-07-22 07:58:55.498 ┆ 207.8305 │
├╌╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌┤
│ 672 ┆ 2019-07-23 20:15:29.461 ┆ 3.086 │
├╌╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌┤
│ 328 ┆ 2019-07-22 21:19:08.667 ┆ 694.677 │
├╌╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌┤
But with mean, the datetimes all go to null
df.groupby('coarse_ints').mean()
┌─────────────┬──────────────┬────────────┐
│ coarse_ints ┆ time ┆ NAV_DEPTH │
│ --- ┆ --- ┆ --- │
│ i64 ┆ datetime[ms] ┆ f64 │
╞═════════════╪══════════════╪════════════╡
│ 232 ┆ null ┆ 96.967125 │
├╌╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌┤
│ 216 ┆ null ┆ 156.889 │
├╌╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌╌╌┼╌╌╌╌╌╌╌╌╌╌╌╌┤
groupby_dynamic
looked promising, but it needs a regular time interval. I need to average every 8 samples, regardless of the irregular time interval.
CodePudding user response:
If you operate on the underlying integer representation of the datetime, then cast back when done, you can get the mean
via a regular groupby
(I admit this is slightly non-intuitive ;)
df.with_column(
pl.col('time').to_physical()
).groupby(
by = pl.col('coarse_ints'),
maintain_order = True # or not :)
).mean().with_column(
pl.col('time').cast( pl.Datetime('ms') )
)
Note that casting back from the physical/integer representation should include the original timeunit (eg: 'ms','us','ns') so as to avoid potentially incorrect scaling.