I have a dataframe that looks like this:
0 1
0 {'time': '1662249600', 'formattedTime': 'Sep 4... {'time': '1663459200', 'formattedTime': 'Sep 1...
1 {'time': '1662336000', 'formattedTime': 'Sep 5... {'time': '1663545600', 'formattedTime': 'Sep 1...
2 {'time': '1662422400', 'formattedTime': 'Sep 6... {'time': '1663632000', 'formattedTime': 'Sep 2...
3 {'time': '1662508800', 'formattedTime': 'Sep 7... {'time': '1663718400', 'formattedTime': 'Sep 2...
4 {'time': '1662595200', 'formattedTime': 'Sep 8... {'time': '1663804800', 'formattedTime': 'Sep 2...
where each cell looks like this:
{'time': '1662249600', 'formattedTime': 'Sep 4, 2022', 'value': 47, 'formattedValue': '47', 'isPartial': False}
How can I pull a specific value (e.g. time
) from each dict and add it to new columns. The result would be something like this:
time_0 time_1
0 1662249600 1663459200
1 1662336000 1663545600
2 1662422400 1663632000
3 1662508800 1663718400
4 1662595200 1663804800
CodePudding user response:
If your data inside columns are dictionaries, you can do:
df["time_0"] = df[0].apply(pd.Series)["time"]
df["time_1"] = df[1].apply(pd.Series)["time"]
df = df.drop([0,1], axis=1)