Determine the number of distinct ways to arrange the letters for each word in the range A1:A18
.
Input | Desired Output |
---|---|
arrangement | 2494800 |
sequence | 6720 |
succession | 302400 |
organization | 29937600 |
disposition | 1663200 |
structure | 45360 |
system | 360 |
series | 180 |
grouping | 20160 |
classification | 1816214400 |
categorization | 5448643200 |
codification | 19958400 |
systematization | 27243216000 |
disposal | 20160 |
form | 24 |
layout | 720 |
array | 30 |
For example the word arrangement
Formula:
n!
nPr = -------------------
(n1! n2! . . . nr!)
In the (nPr) permutation equation, place the values retrieved from the term arrangement.
11!
nPr = -----------------------
(2! 2! 2! 1! 2! 1! 1! )
1 x 2 x 3 x 4 x 5 x 6 x 7 x 8 x 9 x 10 x 11
= ---------------------------------------------
{(1 x 2) (1 x 2) (1 x 2) (1) (1 x 2) (1) (1)}
nPr of word arrangement = 2494800
As a result, the letters in the word arrangement may be arranged in 2494800 distinct ways.
CodePudding user response:
Factorial can be easily found with FACT
. Unique letter count is a bit complicated, but once we
Simplified like this:
factorial of (Length of the (Range)) / Product of factorial of each sum of unique letter count
Used formulas help
ARRAYFORMULA
- IFERROR
- BYROW
- QUERY
- LAMBDA
- FACT
- LEN
- PRODUCT
- COUNTIF
- UNIQUE
- TRANSPOSE
- SPLIT
- REGEXREPLACE