original dataframe
id | name | |
---|---|---|
1 | [email protected] | john |
2 | [email protected] | Maike |
2 | id2@second | Maike |
1 | [email protected] | john |
I want to convert to this
id | email1 | name | |
---|---|---|---|
1 | [email protected] | [email protected] | john |
2 | [email protected] | id2@second | Maike |
it's only an example, I have very large file and more than 60 columns
im using
df = spark.read.option("header",True) \
.csv("contatcs.csv", sep =',')
but works to with pyspark.pandas api
import pyspark.pandas as ps
df = ps.read_csv('contacts.csv', sep=',')
df.head()
but I prefer spark.read because it's a Lazy Evaluation and the pandas API is not
CodePudding user response:
pyspark
I have included a corner case when there is uneven number of email ids. For that, find the max length and iterate to fetch email at each index:
from pyspark.sql import functions as F
df = spark.createDataFrame([(1, '[email protected]', 'john'),(2, '[email protected]', 'Maike'),(2, 'id2@second', 'Maike'),(1, '[email protected]', 'john'),(3, '[email protected]', 'amy'),], ['id', 'email', 'name'])
df = df.groupby("id", "name").agg(F.collect_list("email").alias("email"))
max_len = df.select(F.size("email").alias("size")).collect()[0]["size"]
for i in range(1, max_len 1):
df = df.withColumn(f"email{i}", F.when(F.size("email") >= i, F.element_at("email", i)).otherwise(F.lit("")))
df = df.drop("email")
Output:
--- ----- ------------- --------------
|id |name |email1 |email2 |
--- ----- ------------- --------------
|2 |Maike|[email protected]|id2@second |
|3 |amy |[email protected]| |
|1 |john |[email protected]|[email protected]|
--- ----- ------------- --------------
pandas
Since you have mentioned pandas in the tags, following is the solution in pandas:
df = pd.DataFrame(data=[(1, '[email protected]', 'john'),(2, '[email protected]', 'Maike'),(2, 'id2@second', 'Maike'),(1, '[email protected]', 'john'),(3, '[email protected]', 'amy'),], columns=["id","email","name"])
df = df.groupby("id").agg(email=("email",list), name=("name",pd.unique))
df2 = df.apply(lambda row: pd.Series(data={f"email{i 1}":v for i,v in enumerate(row["email"])}, dtype="object"), axis=1)
df = df.drop("email", axis=1).merge(df2, on="id")
Output:
name email1 email2
id
1 john [email protected] [email protected]
2 Maike [email protected] id2@second
3 amy [email protected] NaN
CodePudding user response:
In order to do it deterministically in Spark, you must have some rule to determine which email is first and which is second. The row order in the CSV file (not having a specified column for row number) is a bad rule when you work with Spark, because every row may go to a different node, and then you will cannot see which of rows was first or second.
In the following example, I assume that the rule is the alphabetical order, so I collect all the emails into one array using collect_set
and then sort them using array_sort
.
Input:
from pyspark.sql import functions as F
df = spark.createDataFrame(
[('1', '[email protected]', 'john'),
('2', '[email protected]', 'Maike'),
('2', 'id2@second', 'Maike'),
('1', '[email protected]', 'john')],
['id', 'email', 'name'])
Script:
emails = F.array_sort(F.collect_set('email'))
df = df.groupBy('id', 'name').agg(
emails[0].alias('email0'),
emails[1].alias('email1'),
)
df.show()
# --- ----- ------------- --------------
# | id| name| email0| email1|
# --- ----- ------------- --------------
# | 2|Maike|[email protected]| id2@second|
# | 1| john|[email protected]|[email protected]|
# --- ----- ------------- --------------
If you had a row number, something like...
from pyspark.sql import functions as F
df = spark.createDataFrame(
[('1', '1', '[email protected]', 'john'),
('2', '2', '[email protected]', 'Maike'),
('3', '2', 'id2@second', 'Maike'),
('4', '1', '[email protected]', 'john')],
['row_number', 'id', 'email', 'name'])
You could use something like below options:
emails = F.array_sort(F.collect_set(F.struct(F.col('row_number').cast('long'), 'email')))
df = df.groupBy('id', 'name').agg(
emails[0]['email'].alias('email0'),
emails[1]['email'].alias('email1'),
)
df.show()
# --- ----- ------------- --------------
# | id| name| email0| email1|
# --- ----- ------------- --------------
# | 2|Maike|[email protected]| id2@second|
# | 1| john|[email protected]|[email protected]|
# --- ----- ------------- --------------
from pyspark.sql import Window as W
w = W.partitionBy('id', 'name').orderBy('row_number')
df = (df
.withColumn('_rn', F.row_number().over(w))
.filter('_rn <= 2')
.withColumn('_rn', F.concat(F.lit('email'), '_rn'))
.groupBy('id', 'name')
.pivot('_rn')
.agg(F.first('email'))
)
df.show()
# --- ----- ------------- --------------
# | id| name| email1| email2|
# --- ----- ------------- --------------
# | 1| john|[email protected]|[email protected]|
# | 2|Maike|[email protected]| id2@second|
# --- ----- ------------- --------------