I have an iris dataset that has 5 columns,4 of which are useful features and I wanna draw a boxplot using them,but I also have a useless column that I wanna drop out,how can I do it? columns The code looks like this:
import pandas as pd
import numpy as np
from sklearn.datasets import load_iris
import matplotlib.pyplot as plt
iris_data = load_iris()
# print(iris_data)
iris = pd.DataFrame(data=np.c_[iris_data['data'], iris_data['target']],
columns=iris_data['feature_names'] ['species'])
setosa = iris.head(50)
print(setosa.columns)
plt.boxplot(setosa, vert=True)
plt.show()
I expect a boxplot only has the first four features
CodePudding user response:
The column can be dropped using DataFrame.drop(columns='<your_column_name>')
. More information can be found in the documentation of pandas
import pandas as pd
import numpy as np
from sklearn.datasets import load_iris
import matplotlib.pyplot as plt
iris_data = load_iris()
iris = pd.DataFrame(data=np.c_[iris_data['data'], iris_data['target']],
columns=iris_data['feature_names'] ['species'])
iris = iris.drop(columns="species")
setosa = iris.head(50)
print(setosa.columns)
plt.boxplot(setosa, vert=True)
plt.show()