Home > Mobile >  How to calculate average of monthly sales data from python pandas dataframe
How to calculate average of monthly sales data from python pandas dataframe

Time:11-20

I have below pandas dataframe which has employees sales data for october month.

            Employee            Timerange    Dials   Conn  Conv     Mtg Bkd     Talk            Dial 
0           Ricky Ponting       10/3 - 10/7  1,869   102   60.0        2.0      3h:08m          5h:23m
1           Adam Gilchrist      10/3 - 10/7  1,336    53   30.0        1.0      1h:10m          3h:58m
2           Michael Clarke      10/3 - 10/7  1,960    74   42.0        1.0      2h:02m          5h:28m
3           Shane Warne         10/3 - 10/7  1,478    62   45.0        1.0      1h:55m          4h:07m

Schema -

#   Column     Non-Null Count  Dtype
---  ------     --------------  -----
 1   Timerange  40 non-null     object
 2   Dials      40 non-null     object
 3   Conn       40 non-null     int64
 4   Conv      39 non-null     float64
 5   Mtg Bkd  39 non-null     float64
 6   Talk      40 non-null     object
 7   Dial︎    40 non-null     object

I basically want to check the dials-to-connection and the dials-to-conversation average rates of the whole team for the month. Example output like below -

 Month     Dials    Conn      Dials -> Conn      Dials -> Conv
October    60517    2702         0.045                0.026

I tried using pd.DatetimeIndex(df['Timerange']).Month and separate the column but it is giving me error dateutil.parser._parser.ParserError: Unknown string format: 10/3 - 10/7. Please help me guys

CodePudding user response:

I will assume that your Timerange always starts with the month you are interested in, and that all data comes from the same year (this year). If these are reasonable assumptions, this works:

emps = [
    "Ricky Ponting", "Adam Gilchrist", "Michael Clarke", "Shane Warne"
]

timeranges = [
    "10/3 - 10/7", "10/3 - 10/7", "10/3 - 10/7", "10/3 - 10/7"
]

dials = [1869, 1336, 1960, 1478]
conn = [102, 53, 74, 62]
conv = [60, 30, 42, 45]

import pandas as pd

df = pd.DataFrame(
    {
        "Employee": emps,
        "Timerange": timeranges,
        "Dials": dials,
        "Conn": conn,
        "Conv": conv
    }
)

import datetime

def get_month(row):
    month = int(row["Timerange"].split("/")[0])
    return datetime.date(year=2022, month=month, day=1)

df["Month"] = df.apply(get_month, axis=1)

sums = df.groupby("Month").sum()
sums["Dials -> Conn"] = sums["Conn"] / sums["Dials"]
sums["Dials -> Conv"] = sums["Conv"] / sums["Dials"]
sums

enter image description here

CodePudding user response:

Here is a proposition using pandas.DataFrame.groupby and pandas.DataFrame.apply :

df["Month"]= pd.to_datetime(df["Timerange"].str.extract(r"(\d )/\d ", expand=False), format="%m").dt.month_name()

df["Dials"]= df["Dials"].str.replace(",", "").astype(float)

out = (
        df.groupby("Month", as_index=False)
                .apply(lambda x: pd.Series({"Dials": x["Dials"].sum(),
                                            "Conn": x["Conn"].sum(),
                                            "Dials -> Conn": x["Conn"].sum()/x["Dials"].sum(),
                                            "Dials -> Conv": x["Conv"].sum()/x["Dials"].sum()}))

      )

# Output :

print(out)

     Month   Dials   Conn  Dials -> Conn  Dials -> Conv
0  October  6643.0  291.0       0.043806       0.026645
  • Related