I have a data frame (df) with these columns: user, vector, and group.
df = pd.DataFrame({'user': ['user_1', 'user_2', 'user_3', 'user_4', 'user_5', 'user_6'], 'vector': [[1, 0, 2, 0], [1, 8, 0, 2],[6, 2, 0, 0], [5, 0, 2, 2], [3, 8, 0, 0],[6, 0, 0, 2]], 'group': ['A', 'B', 'C', 'B', 'A', 'A']})
I want to calculate aggregated variance for each group.
I tried this code, but it return an error
aggregated_variance = (df.groupby('group', as_index=False)['vector'].agg(["var"]))
ValueError: no results
CodePudding user response:
If you take the sum()
after you group df
, you will have a dataframe that shows a list of all vector
values for each group. Then, create a lambda function to calculate the variance of each list of vector
values.
aggregated = df.groupby("group").sum()['vector']
aggregated_variance = aggregated.apply(lambda x: np.var(x)).reset_index()
CodePudding user response:
You can use .explode
to clean up your data and then perform a .groupby
operation:
out = (
df.explode('vector')
.groupby('group')['vector'].var(ddof=1)
)
print(out)
group
A 7.060606
B 7.428571
C 8.000000
Name: vector, dtype: float64
The trick here lies in the use of .explode
:
>>> df.head()
user vector group
0 user_1 [1, 0, 2, 0] A
1 user_2 [1, 8, 0, 2] B
2 user_3 [6, 2, 0, 0] C
3 user_4 [5, 0, 2, 2] B
4 user_5 [3, 8, 0, 0] A
>>> df.explode('vector').head()
user vector group
0 user_1 1 A
0 user_1 0 A
0 user_1 2 A
0 user_1 0 A
1 user_2 1 B
...
CodePudding user response:
import pandas as pd
# Create a DataFrame with the data you provided
df = pd.DataFrame({'user': ['user_1', 'user_2', 'user_3', 'user_4', 'user_5', 'user_6'],
'vector': [[1, 0, 2, 0], [1, 8, 0, 2], [6, 2, 0, 0], [5, 0, 2, 2], [3, 8, 0, 0], [6, 0, 0, 2]],
'group': ['A', 'B', 'C', 'B', 'A', 'A']})
# Group the data by the 'group' column and calculate the variance of the 'vector' column within each group
aggregated_variance = df.groupby('group')['vector'].var()
# Print the aggregated variance for each group
print(aggregated_variance)
# Group the data by the 'group' column and calculate the variance of the 'vector' column within each group
aggregated_variance = df.groupby('group')['vector'].var()
# Move the group names from the index to a new column, and reset the index to be a range from 0 to the number of groups
aggregated_variance = aggregated_variance.reset_index()
# Print the resulting DataFrame
print(aggregated_variance)
CodePudding user response:
FIX: Here is the code for this solution:
import pandas as pd
# Storing the dataframe in a variable
df = pd.DataFrame({'user': ['user_1', 'user_2', 'user_3', 'user_4', 'user_5', 'user_6'], 'vector': [[1, 0, 2, 0], [1, 8, 0, 2],[6, 2, 0, 0], [5, 0, 2, 2], [3, 8, 0, 0],[6, 0, 0, 2]], 'group': ['A', 'B', 'C', 'B', 'A', 'A']})
# Using the GroupBy function to reference the 'group' and the DataFrame's 'vector' columns
grouped_data = df.groupby('group')['vector'].apply(lambda x: x.var())
# Printing out the resulting grouped variance
print(grouped_data)