I have a 25 by 25 matrix looks like
solution = array([[ 3, 14, 12, 6, 25, 19, 7, 21, 18, 16, 5, 24, 9, 10, 1, 13,
23, 4, 20, 8, 22, 11, 17, 15, 2],
[ 2, 9, 19, 8, 13, 12, 20, 3, 10, 11, 17, 7, 23, 15, 14, 22,
25, 18, 5, 16, 4, 21, 6, 24, 1],
[21, 18, 15, 7, 5, 4, 6, 22, 17, 1, 13, 20, 3, 11, 2, 24,
10, 14, 12, 9, 16, 8, 25, 19, 23],
...
...
[14, 13, 21, 1, 3, 17, 5, 12, 16, 15, 6, 19, 22, 4, 23, 10,
8, 24, 25, 2, 9, 20, 18, 7, 11]])
I want to convert all elements into string letters. For example, now solution[0][2]=12
, and in my new solution it should be solution_new[0][2]='L'.
I've tried the following code but didn't work.
for i in rows:
for j in cols:
for k in vals:
solution[i][j] = chr(k 64)
Is there any other function? Thanks!
CodePudding user response:
list(map((lambda sol: [chr(k 64) for k in sol]), solution))
CodePudding user response:
Try the following:
import numpy as np
x = np.array([[1.,2.,3.],[4.,5.,6.]])
np.vectorize(lambda x: chr(64 x))(x.astype(int))
>>> array([['A', 'B', 'C'],
['D', 'E', 'F']], dtype='<U1')
Its a quick elegant solution that does exactly what you need.
Further Explanation: np.vectorize(function, object): It applies the function per element in object. In this case it applies our lambda x: chr(64 x) function to each element. This is the equivalent of writing:
def f(x):
return char(64 x)
for each element of the object. x.astype(int)
simply converts all elements of x to the same type int like you want.
Hope this helps and happy coding!
CodePudding user response:
(Note: you may also want to look at this SO answer).
Edit: Oops: I didn't see the 64. Amended.
How about:
out = np.apply_along_axis(np.vectorize(chr), 0, 64 x.astype(int))
Example:
x = np.array([
[3, 14, 12, 6, 25, 19, 7, 21, 18, 16, 5, 24,
9, 10, 1, 13, 23, 4, 20, 8, 22, 11, 17, 15, 2],
[ 2, 9, 19, 8, 13, 12, 20, 3, 10, 11, 17, 7, 23,
15, 14, 22, 25, 18, 5, 16, 4, 21, 6, 24, 1],
[21, 18, 15, 7, 5, 4, 6, 22, 17, 1, 13, 20,
3, 11, 2, 24, 10, 14, 12, 9, 16, 8, 25, 19, 23],
[14, 13, 21, 1, 3, 17, 5, 12, 16, 15, 6, 19, 22,
4, 23, 10, 8, 24, 25, 2, 9, 20, 18, 7, 11]
], dtype=float)
>>> x.dtype
dtype('float64')
>>> np.apply_along_axis(np.vectorize(chr), 1, 64 x.astype(int))
array([['C', 'N', 'L', 'F', 'Y', 'S', 'G', 'U', 'R', 'P', 'E', 'X', 'I',
'J', 'A', 'M', 'W', 'D', 'T', 'H', 'V', 'K', 'Q', 'O', 'B'],
['B', 'I', 'S', 'H', 'M', 'L', 'T', 'C', 'J', 'K', 'Q', 'G', 'W',
'O', 'N', 'V', 'Y', 'R', 'E', 'P', 'D', 'U', 'F', 'X', 'A'],
['U', 'R', 'O', 'G', 'E', 'D', 'F', 'V', 'Q', 'A', 'M', 'T', 'C',
'K', 'B', 'X', 'J', 'N', 'L', 'I', 'P', 'H', 'Y', 'S', 'W'],
['N', 'M', 'U', 'A', 'C', 'Q', 'E', 'L', 'P', 'O', 'F', 'S', 'V',
'D', 'W', 'J', 'H', 'X', 'Y', 'B', 'I', 'T', 'R', 'G', 'K']],
dtype='<U1')
Timings
n, m = 1000, 1000
x = np.random.randint(0, 26, size=(n, m))
%timeit np.apply_along_axis(np.vectorize(chr), 1, 64 x.astype(int))
177 ms ± 190 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)
%timeit list(map((lambda sol: [chr(k 64) for k in sol]), x))
233 ms ± 1.65 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
%timeit np.vectorize(lambda x: chr(64 x))(x.astype(int))
268 ms ± 280 µs per loop (mean ± std. dev. of 7 runs, 1 loop each)