I have a dataframe that looks like this
--- ---- ------ ------- ------
| Id|fomrid|values|occ| comments
--- ---- ------ ------- ------
| 1| x1 | 22.0| 1| text1|
| 1| x1 | test| 2| text2 |
| 1| x1 | 11| 3| text3 |
| 1| x2 | 21 | 0 | text4 |
| 2| p1 | 1 | 1| text5 |
--- ---- ------ ------- ------
How can I transform it to the below dataframe? Essentially, I want to create a list of values and occ based on the formId.
--- ------ -------------- -------- ------
| Id|fomrid|List_values |List_occ| comments
--- ------ -------------- -------- ------
| 1| x1 |[22.0, test,11]|[1,2,3]| text1|
| 1| x2 | [21] | [0] | text4 |
| 2| p1 | [1] | [1] | text5 |
--- ----- --------------- ------- -------
CodePudding user response:
You may use collect_list
to achieve this.
Using spark sql
Creating a temporary view and running this on your spark session
input_df.createOrReplaceTempView("my_temp_table_or_view")
output_df = sparkSession.sql("<insert sql below here>")
SELECT
Id,
fomrid,
collect_list(values) as List_values,
collect_list(occ) as List_occ,
MIN(comments) as comments
FROM
my_temp_table_or_view
GROUP BY
Id, formrid
Using the pyspark api
from pyspark.sql import functions as F
output_df = (
input_df.groupBy(["Id","fomrid"])
.agg(
F.collect_list("values").alias("List_values"),
F.collect_list("occ").alias("List_occ"),
F.min("comments").alias("comments")
)
)
Using scala
val output_df = input_df.groupBy("Id","fomrid")
.agg(
collect_list("values").alias("List_values"),
collect_list("occ").alias("List_occ"),
min("comments").alias("comments")
)
Let me know if this works for you.