I have a pyspark dataframe:
Location Month Brand Sector TrueValue PickoutValue
USA 1/1/2021 brand1 cars1 7418 30000
USA 2/1/2021 brand1 cars1 1940 2000
USA 3/1/2021 brand1 cars1 4692 2900
USA 4/1/2021 brand1 cars1
USA 1/1/2021 brand2 cars2 16383104.2 16666667
USA 2/1/2021 brand2 cars2 26812874.2 16666667
USA 3/1/2021 brand2 cars2
USA 1/1/2021 brand3 cars3 75.6% 70.0%
USA 3/1/2021 brand3 cars3 73.1% 70.0%
USA 2/1/2021 brand3 cars3 77.1% 70.0%
I'm having Month values from 1/1/2021 to 12/1/2021 for each Brands. I need to create another column with the cumulative sum of the TrueValue column based on brand and sector and order by Month. The rows having % values should be cumulative sum divided by the number of months.
My expected dataframe is:
Location Month Brand Sector TrueValue PickoutValue TotalSumValue
USA 1/1/2021 brand1 cars1 7418 30000 7418
USA 2/1/2021 brand1 cars1 1940 2000 9358
USA 3/1/2021 brand1 cars1 4692 2900 14050
USA 4/1/2021 brand1 cars1 14050
USA 1/1/2021 brand2 cars2 16383104.2 16666667 16383104.2
USA 2/1/2021 brand2 cars2 26812874.2 16666667 43195978.4
USA 3/1/2021 brand2 cars2 43195978.4
USA 1/1/2021 brand3 cars3 75.6% 70.0% 75.6%
USA 3/1/2021 brand3 cars3 73.1% 70.0% 76.3%
USA 2/1/2021 brand3 cars3 77.1% 70.0% 75.3%
For the rows having % values, this is how I need to calculate the cumulative sum ordering by month:
(75.6 0)/1 = 75.6%
(75.6 77.1)/2 = 76.3%
(75.6 77.1 73.1)/3 = 75.3%
I'm able to generate the cumulative sum but I'm not getting the cumulative sum of % values.
This is my code block:
df=df.withColumn("month_in_timestamp", to_timestamp(df.Month, 'dd/MM/yyyy'))
windowval = (Window.partitionBy('Brand','Sector').orderBy('Month')
.rangeBetween(Window.unboundedPreceding, 0))
df1 = df1.withColumn('TotalSumValue', F.sum('TrueValue').over(windowval))
CodePudding user response:
It seems the calculation for the values with % is a cumulative average calculation. If so, you can apply cumulative sum for the values that do not contain a %
, and cumulative average for the values that have %
(remove the percentage sign first before calculation). You can use when
-otherwise
to apply both calculations.
import pyspark.sql.functions as F
from pyspark.sql.window import Window
df = df.withColumn("month_in_timestamp", F.to_timestamp(F.col("Month"), 'dd/MM/yyyy'))
# use 'month_in_timestamp' instead of 'month'
windowval = (Window.partitionBy('Brand','Sector').orderBy('month_in_timestamp')
.rangeBetween(Window.unboundedPreceding, 0))
df = df.withColumn("TotalSumValue",
F.when(F.col("TrueValue").contains("%"),
F.concat(F.avg(F.expr("replace(TrueValue, '%', '')")).over(windowval).cast("decimal(4,1)"), F.lit("%")))
.otherwise(F.sum('TrueValue').over(windowval).cast("decimal(13,1)")))
df.show()
# -------- -------- ------ ------ ---------- ------------ ------------------- -------------
# |Location| Month| Brand|Sector| TrueValue|PickoutValue| month_in_timestamp|TotalSumValue|
# -------- -------- ------ ------ ---------- ------------ ------------------- -------------
# | USA|1/1/2021|brand1| cars1| 7418| 30000|2021-01-01 00:00:00| 7418.0|
# | USA|2/1/2021|brand1| cars1| 1940| 2000|2021-01-02 00:00:00| 9358.0|
# | USA|3/1/2021|brand1| cars1| 4692| 2900|2021-01-03 00:00:00| 14050.0|
# | USA|4/1/2021|brand1| cars1| null| null|2021-01-04 00:00:00| 14050.0|
# | USA|1/1/2021|brand2| cars2|16383104.2| 16666667|2021-01-01 00:00:00| 16383104.2|
# | USA|2/1/2021|brand2| cars2|26812874.2| 16666667|2021-01-02 00:00:00| 43195978.4|
# | USA|3/1/2021|brand2| cars2| null| null|2021-01-03 00:00:00| 43195978.4|
# | USA|1/1/2021|brand3| cars3| 75.6%| 70.0%|2021-01-01 00:00:00| 75.6%|
# | USA|2/1/2021|brand3| cars3| 77.1%| 70.0%|2021-01-02 00:00:00| 76.4%|
# | USA|3/1/2021|brand3| cars3| 73.1%| 70.0%|2021-01-03 00:00:00| 75.3%|
# -------- -------- ------ ------ ---------- ------------ ------------------- -------------