Suppose I ave a Dataset that looks like this:
val data1 = Seq(
("81518165", "10", "0412221432", "2021.02.01 12:29:57"),
("81518165", "10", "0412392873", "2021.02.01 11:33:41"),
("81518165", "10", "0412392879", "2021.02.01 05:12:12"),
("81518165", "10", "0412392950", "2021.02.01 01:39:37"),
("23698102", "12", "0412221432", "2021.02.14 12:55:33"),
("23698102", "12", "0412392873", "2021.02.14 11:33:37"),
("23698102", "12", "0412392879", "2021.02.14 05:12:00")
)
val df1 = data1.toDF("AUFTRAG", "AUFTRAG_POS", "IID_CODE", "ERST_TIMESTAMP")
I want to remove duplicate rows, caused by dates, by aggregating the columns "AUFTRAG" and "AUFTRAG_POS" based on the maximum date "ERST_TIMESTAMP". To have the max date, this is my code :
df1.withColumn("ERST_TIMESTAMP", to_timestamp(col("ERST_TIMESTAMP"),"yyyy.MM.dd HH:mm:ss"))
.groupBy("AUFTRAG", "AUFTRAG_POS")
.agg(max("ERST_TIMESTAMP"))
.show()
The is the result as expected :
-------- ----------- -------------------
| AUFTRAG|AUFTRAG_POS|max(ERST_TIMESTAMP)|
-------- ----------- -------------------
|81518165| 10|2021-02-01 12:29:57|
|23698102| 12|2021-02-14 12:55:33|
-------- ----------- -------------------
My objectif now is to replace the ERST_TIMESTAMP, grouped by "AUFTRAG" and "AUFTRAG_POS" by this max date. This is my solution :
val df2 = df1.withColumn("ERST_TIMESTAMP", to_timestamp(col("ERST_TIMESTAMP"),"yyyy.MM.dd HH:mm:ss"))
.groupBy("AUFTRAG", "AUFTRAG_POS")
.agg(max("ERST_TIMESTAMP"))
df1.join(df2, Seq("AUFTRAG", "AUFTRAG_POS")).show()
The expected result, exactly as I want :
I'm not very satisfied by this method. Is there another way ? Any help please ?
CodePudding user response:
You can use the Window
function for this as below
import org.apache.spark.sql.functions._
val window = Window.partitionBy("AUFTRAG", "AUFTRAG_POS")
df1.withColumn("ERST_TIMESTAMP", to_timestamp(col("ERST_TIMESTAMP"),"yyyy.MM.dd HH:mm:ss"))
.withColumn("ERST_TIMESTAMP", max("ERST_TIMESTAMP").over(window))
.show(false)
Output:
-------- ----------- ---------- -------------------
|AUFTRAG |AUFTRAG_POS|IID_CODE |ERST_TIMESTAMP |
-------- ----------- ---------- -------------------
|81518165|10 |0412221432|2021-02-01 12:29:57|
|81518165|10 |0412392873|2021-02-01 12:29:57|
|81518165|10 |0412392879|2021-02-01 12:29:57|
|81518165|10 |0412392950|2021-02-01 12:29:57|
-------- ----------- ---------- -------------------