I was asked in an interview today below question. I gave O(nlgn) solution but I was asked to give O(n) solution. I could not come up with O(n) solution. Can you help?
An input array is given like [1,2,4] then every element of it is doubled and
appended into the array. So the array now looks like [1,2,4,2,4,8]. How
this array is randomly shuffled. One possible random arrangement is
[4,8,2,1,2,4]. Now we are given this random shuffled array and we want to
get original array [1,2,4] in O(n) time. How can I do it?
CodePudding user response:
def findOriginalArray(self, changed: List[int]) -> List[int]:
size = len(changed)
ans = []
left_elements = size//2
#IF SIZE IS ODD THEN RETURN [] NO SOLN. IS POSSIBLE
if(size%2 !=0):
return ans
#FREQUENCY DICTIONARY given array [0,0,2,1] my map will be: {0:2,2:1,1:1}
d = {}
for i in changed:
if(i in d):
d[i] =1
else:
d[i] = 1
# CHECK THE EDGE CASE OF 0
if(0 in d):
count = d[0]
half = count//2
if((count % 2 != 0) or (half > left_elements)):
return ans
left_elements -= half
ans = [0 for i in range(half)]
#CHECK REST OF THE CASES : considering the values will be 10^5
for i in range(1,50001):
if(i in d):
if(d[i] > 0):
count = d[i]
if(count > left_elements):
ans = []
break
left_elements -= d[i]
for j in range(count):
ans.append(i)
if(2*i in d):
if(d[2*i] < count):
ans = []
break
else:
d[2*i] -= count
else:
ans = []
break
return ans
CodePudding user response:
I have a simple idea which might not be the best, but I could not think of a case where it would not work. Having the array A
with the doubled elements and randomly shuffled, keep a helper map. Process each element of the array and, each time you find a new element, add it to the map with the value 0. When an element is processed, increment map[i]
and decrement map[2*i]
. Next you iterate over the map and print the elements that have a value greater than zero.
A simple example, say that the vector is:
[1, 2, 3]
And the doubled/shuffled version is:
A = [3, 2, 1, 4, 2, 6]
When processing 3, first add the keys 3 and 6 to the map with value zero. Increment map[3]
and decrement map[6]
. This way, map[3] = 1
and map[6] = -1
. Then for the next element map[2] = 1
and map[4] = -1
and so forth. The final state of the map in this example would be map[1] = 1
, map[2] = 1
, map[3] = 1
, map[4] = -1
, map[6] = 0
, map[8] = -1
, map[12] = -1
.
Then you just process the keys of the map and, for each key with a value greater than zero, add it to the output. There are certainly more efficient solutions, but this one is O(n)
.