I'm using perfplot
to make only a few measurements. I would like to see measured input values as x-axis labels similarly to generated y-axis labels.
Currently I see 10^2 10^3 10^4 10^5 10^6 10^7
as x-axis labels.
I want to have 16 512 16384 524288 16777216
as x-axis labels.
perfplot
uses internally matplotlib
, so I think it should be possible to achieve.
Example code:
import numpy as np
import perfplot
perfplot.show(
setup=lambda n: np.random.rand(n),
kernels=[
lambda a: np.c_[a, a],
lambda a: np.stack([a, a]).T,
lambda a: np.vstack([a, a]).T,
lambda a: np.column_stack([a, a]),
lambda a: np.concatenate([a[:, None], a[:, None]], axis=1),
],
labels=["c_", "stack", "vstack", "column_stack", "concat"],
n_range=[16, 512, 16384, 524288, 16777216],
xlabel="len(a)",
)
Current output:
CodePudding user response:
You can use plot
instead of show
to get access to the current axes object after perfplot
has finished and then set ticks as needed:
import numpy as np
import perfplot
import matplotlib.pyplot as plt
import matplotlib.ticker as mt
n_range = [16, 512, 16384, 524288, 16777216]
perfplot.plot(
setup=lambda n: np.random.rand(n),
kernels=[
lambda a: np.c_[a, a],
lambda a: np.stack([a, a]).T,
lambda a: np.vstack([a, a]).T,
lambda a: np.column_stack([a, a]),
lambda a: np.concatenate([a[:, None], a[:, None]], axis=1),
],
labels=["c_", "stack", "vstack", "column_stack", "concat"],
n_range=n_range,
xlabel="len(a)",
)
ax = plt.gca()
ax.xaxis.set_ticks(n_range)
ax.xaxis.set_major_formatter(mt.StrMethodFormatter('{x}'))
plt.show()