Home > Software design >  How to paste one picture on top of another into a defined region
How to paste one picture on top of another into a defined region

Time:10-07

I have this simple Python code that captures video from the camera and makes predictions on the emotions of the face (took it from enter image description here

import numpy as np
import argparse
import matplotlib.pyplot as plt
import cv2
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense, Dropout, Flatten
from tensorflow.keras.layers import Conv2D
from tensorflow.keras.optimizers import Adam
from tensorflow.keras.layers import MaxPooling2D
from tensorflow.keras.preprocessing.image import ImageDataGenerator
import os
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'

# command line argument
ap = argparse.ArgumentParser()
ap.add_argument("--mode",help="train/display")
mode = ap.parse_args().mode

# plots accuracy and loss curves
def plot_model_history(model_history):
    """
    Plot Accuracy and Loss curves given the model_history
    """
    fig, axs = plt.subplots(1,2,figsize=(15,5))
    # summarize history for accuracy
    axs[0].plot(range(1,len(model_history.history['accuracy']) 1),model_history.history['accuracy'])
    axs[0].plot(range(1,len(model_history.history['val_accuracy']) 1),model_history.history['val_accuracy'])
    axs[0].set_title('Model Accuracy')
    axs[0].set_ylabel('Accuracy')
    axs[0].set_xlabel('Epoch')
    axs[0].set_xticks(np.arange(1,len(model_history.history['accuracy']) 1),len(model_history.history['accuracy'])/10)
    axs[0].legend(['train', 'val'], loc='best')
    # summarize history for loss
    axs[1].plot(range(1,len(model_history.history['loss']) 1),model_history.history['loss'])
    axs[1].plot(range(1,len(model_history.history['val_loss']) 1),model_history.history['val_loss'])
    axs[1].set_title('Model Loss')
    axs[1].set_ylabel('Loss')
    axs[1].set_xlabel('Epoch')
    axs[1].set_xticks(np.arange(1,len(model_history.history['loss']) 1),len(model_history.history['loss'])/10)
    axs[1].legend(['train', 'val'], loc='best')
    fig.savefig('plot.png')
    plt.show()

# Define data generators
train_dir = 'data/train'
val_dir = 'data/test'

num_train = 28709
num_val = 7178
batch_size = 64
num_epoch = 50

train_datagen = ImageDataGenerator(rescale=1./255)
val_datagen = ImageDataGenerator(rescale=1./255)

train_generator = train_datagen.flow_from_directory(
        train_dir,
        target_size=(48,48),
        batch_size=batch_size,
        color_mode="grayscale",
        class_mode='categorical')

validation_generator = val_datagen.flow_from_directory(
        val_dir,
        target_size=(48,48),
        batch_size=batch_size,
        color_mode="grayscale",
        class_mode='categorical')

# Create the model
model = Sequential()

model.add(Conv2D(32, kernel_size=(3, 3), activation='relu', input_shape=(48,48,1)))
model.add(Conv2D(64, kernel_size=(3, 3), activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))

model.add(Conv2D(128, kernel_size=(3, 3), activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Conv2D(128, kernel_size=(3, 3), activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))

model.add(Flatten())
model.add(Dense(1024, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(7, activation='softmax'))

# If you want to train the same model or try other models, go for this
if mode == "train":
    model.compile(loss='categorical_crossentropy',optimizer=Adam(lr=0.0001, decay=1e-6),metrics=['accuracy'])
    model_info = model.fit_generator(
            train_generator,
            steps_per_epoch=num_train // batch_size,
            epochs=num_epoch,
            validation_data=validation_generator,
            validation_steps=num_val // batch_size)
    plot_model_history(model_info)
    model.save_weights('model.h5')

# emotions will be displayed on your face from the webcam feed
elif mode == "display":
    model.load_weights('model.h5')

    # prevents openCL usage and unnecessary logging messages
    cv2.ocl.setUseOpenCL(False)

    # dictionary which assigns each label an emotion (alphabetical order)
    emotion_dict = {0: "Angry", 1: "Disgusted", 2: "Fearful", 3: "Happy", 4: "Neutral", 5: "Sad", 6: "Surprised"}

    # start the webcam feed
    cap = cv2.VideoCapture(1)
    while True:
        # Find haar cascade to draw bounding box around face
        ret, frame = cap.read()
        if not ret:
            break
        facecasc = cv2.CascadeClassifier('haarcascade_frontalface_default.xml')
        gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
        faces = facecasc.detectMultiScale(gray,scaleFactor=1.3, minNeighbors=5)

        for (x, y, w, h) in faces:
            cv2.rectangle(frame, (x, y-50), (x w, y h 10), (255, 0, 0), 2)
            roi_gray = gray[y:y   h, x:x   w]
            cropped_img = np.expand_dims(np.expand_dims(cv2.resize(roi_gray, (48, 48)), -1), 0)
            prediction = model.predict(cropped_img)
            maxindex = int(np.argmax(prediction))
            text = emotion_dict[maxindex]

            if ("Happy" in text) or ("Sad" in text):
                cv2.putText(frame, text, (x 20, y-60), cv2.FONT_HERSHEY_SIMPLEX, 1, (255, 255, 255), 2, cv2.LINE_AA)

        cv2.imshow('Video', cv2.resize(frame,(1600,960),interpolation = cv2.INTER_CUBIC))
        if cv2.waitKey(1) & 0xFF == ord('q'):
            break

    cap.release()
    cv2.destroyAllWindows()

CodePudding user response:

Short Implementation of Christoph's great solution in the comments.

Step 1: Use the paint tool to extract the coordinates of the black box region.

you can see the x,y coordinates at the bottom of your image.

Step 2:

a. resize every frame of the video to fit the black region size. width = x1 - x0 and height = y1 - y0.

b. replace the black region pixels with the resized frames.

code:

import cv2

canvasImage = cv2.imread("gift.jpeg")

x0, x1 = 163, 472
y0, y1 = 73, 290

cap = cv2.VideoCapture("desk.mp4")
    
while True:
    isNextFrameAvail, frame = cap.read()
    if not isNextFrameAvail:
        break
    frame_shrunk = cv2.resize(frame, (x1 - x0, y1 - y0))
    canvasImage[y0:y1, x0:x1] = frame_shrunk
    cv2.imshow("Result", canvasImage)
    cv2.waitKey

Result:

  • Related