I have a four dimensional array [time, model number, longitude, latitude] which contain values 0 and 1. i want to find last location of zero in that array with respect to time series (which year is the last time zero occurs].I want to do it for entire time series of [longitude,latitude,model number], and get a 3D array back.
But there are some conditions, if there is only zeros in the series i want to return 0,
if there is only 1's in the series then i want to return 1920.
And i want to find the last occurence only if there is a combination of 1 and 0.
My code is taking lot of time to compute is there any other way to do this?
element=0
for k in range (36): #model num
for j in range (31): #latitude
for i in range (180): # longitude
if t_test_1v1[169,k,j,i]==0:
ET[k,j,i]=0
continue
elif np.any(t_test_1v1[:,k,j,i]==1):
ET_value=max([count for count, item in enumerate(t_test_1v1[1:169,k,j,i]) if item == element], default=0)
ET[k,j,i]=ET_value 1921
continue
else:
ET[k,j,i]=1920
Here is a sample of my input file:
array([[[[0, 0, 1, ..., 1, 1, 1],
[0, 1, 1, ..., 0, 0, 0],
[1, 1, 0, ..., 0, 0, 1],
...,
[0, 0, 0, ..., 0, 0, 0],
[0, 0, 0, ..., 0, 0, 0],
[0, 0, 0, ..., 0, 0, 0]],
[[1, 1, 1, ..., 1, 1, 1],
[1, 1, 1, ..., 1, 1, 1],
[1, 1, 1, ..., 1, 1, 1],
Coordinates:(time: 240, deptht: 36, latitude: 31, longitude: 180)>
* Time (end_year) datetime64[ns] 1921-12-31 1922-12-31 ... 2100-12-31
* deptht (deptht) int64 1 2 3 4 5 6 7 8 9 ... 28 29 30 31 32 33 34 35 36
* longitude (longitude) float64 30.0 32.0 34.0 36.0 ... 384.0 386.0 388.0
* latitude (latitude) float64 -36.0 -34.0 -32.0 -30.0 ... 32.0 34.0 36.0
output file will be like:
<xarray.DataArray (deptht:36, latitude: 37, longitude: 180)>
array([[1983., 2011., 2022., ..., 1937., 1937., 1962.],
[2048., 2081., 2083., ..., 1920., 0., 2011.],
[2044., 1920., 1993., ..., 0., 0., 1920.],
...,
[2004., 1993., 1993., ..., 0., 2010., 2011.],
[1920., 1998., 1988., ..., 2011., 2014., 2014.],
[2000., 0., 0., ..., 2014., 2011., 2000.]])
Coordinates:
* deptht (deptht) int64 1 2 3 4 5 6 7 8 9 ... 28 29 30 31 32 33 34 35 36
* longitude (longitude) float64 30.0 32.0 34.0 36.0 ... 384.0 386.0 388.0
* latitude (latitude) float64 -36.0 -34.0 -32.0 -30.0 ... 32.0 34.0 36.0
CodePudding user response:
the code below
- if there is only zeros in the series, return 0.
- if there is only 1's in the series then i want to return 1920.
- find the position of last 0 if therie zeros ans 1's.
import numpy as np
import xarray as xr
import pandas as pd
# Generate 4D array to test
time_length = 240
depth_length = 36
longitude_length = 37
latitude_length = 180
nums = np.ones(time_length * depth_length * longitude_length * latitude_length)
nums[:175400] = 0
np.random.shuffle(nums)
nums = nums.reshape((time_length, depth_length, longitude_length, latitude_length))
times = pd.date_range("1921-01-01", periods=time_length, freq='y')
depth = np.arange(0, depth_length, 1)
longitude = np.random.random(longitude_length)
latitude = np.random.random(latitude_length)
foo = xr.DataArray(nums, coords=[times, depth, longitude, latitude], dims=["Time", "depth", "longitude", "latitude"])
time = xr.DataArray(np.arange(1921, 1921 time_length, 1), coords=[times], dims="Time")
# print(time) the follow part will return the position of the maximum value for the axis 0 np.arange(0,
# time_length*depth_length*longitude_length*latitude_length,1).reshape(time_length, depth_length, longitude_length,
# latitude_length) is added so that argmax return the last maximum
ids = ((foo == 0) * np.arange(0, time_length * depth_length * longitude_length * latitude_length, 1).reshape(
time_length, depth_length, longitude_length, latitude_length)).argmax(axis=0)
results = xr.DataArray(
np.zeros(depth_length * longitude_length * latitude_length).reshape(depth_length, longitude_length,
latitude_length),
coords=[depth, longitude, latitude], dims=[ "depth", "longitude", "latitude"])
for id, year in zip(np.arange(1, 241, 1), np.arange(1921, 1921 time_length, 1)):
results = results ((ids == id) * year)
print(results)
# now the cases where it's all 0 or all 1
total = foo.sum(axis=0)
zeros_ids = np.argwhere(np.array(total == 0))
ones_ids = np.argwhere(np.array(total == time_length))
for indexes in ones_ids:
for indexe in indexes:
x0, x1, x2 = indexes
results[x0][x1][x2] = 1920
for indexes in zeros_ids:
for indexe in indexes:
x0, x1, x2 = indexes
results[x0][x1][x2] = 0
print(results)