I need some help, I keep getting this strange situation where my Keras model goes out of range
print(np.array(train_x).shape)
print(np.array(train_y).shape)
Returns:
(731, 42)
(731,)
Then:
normalizer = Normalization(input_shape=[42,], axis=None)
normalizer.adapt(train_x[0])
linear_model = Sequential([
normalizer,
Dense(units=1)
])
linear_model.summary()
Shows:
Model: "sequential_1"
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
normalization_5 (Normalizati (None, 42) 3
_________________________________________________________________
dense_1 (Dense) (None, 1) 43
=================================================================
Total params: 46
Trainable params: 43
Non-trainable params: 3
_________________________________________________________________
Then:
linear_model.compile(
optimizer=tf.optimizers.Adam(learning_rate=0.1),
loss='mean_absolute_error')
linear_model.fit(
train_x,
train_y,
epochs=100)
Which results in an IndexError: list index out of range. It looks like my inputs are in the right shape. Any idea what could be causing this?
CodePudding user response:
train_x
and train_y
needed to be numpy arrays.