I have following example data:
id <- c(1, 2, 3)
ex3 <- c(0.8, 0.2, 0.3)
ex2 <- c(0.1, 0.4, 0.04)
ex1 <- c(0.04, 0.3, 0.5)
ex <- c(1, 1, 1)
ran <- c(0.5, 0.7, 0.6)
dat <- data.frame(id, ex1, ex2, ex3, ex, ran)
dat
id ex1 ex2 ex3 ex ran
1 1 0.04 0.10 0.8 1 0.5
2 2 0.30 0.40 0.2 1 0.7
3 3 0.50 0.04 0.3 1 0.6
I want to modify variable "ex" using following code with dplyr/tidyr:
library(dplyr)
library(tidyr)
dat %>%
pivot_longer(
cols = ex1:ex3
) %>%
arrange(id, desc(value)) %>%
group_by(id) %>%
mutate(ex = ifelse(ran <= value[1] & ran > sum(value[2], value[3]), 5, ex)) %>%
pivot_wider(
names_from=name
)
# A tibble: 3 x 6
# Groups: id [3]
id ex ran ex3 ex2 ex1
<dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 1 5 0.5 0.8 0.1 0.04
2 2 1 0.7 0.2 0.4 0.3
3 3 1 0.6 0.3 0.04 0.5
Is it possible to use the names of "ex1"-"ex3" as new values for "ex" instead of "5" within the ifelse-statement in mutate? Example: Using the names of the ex$-variables as new values leads to this output:
id ex3 ex2 ex1 ex ran
1 1 0.8 0.10 0.04 ex3 0.5
2 2 0.2 0.40 0.30 1 0.7
3 3 0.3 0.04 0.50 1 0.6
Or using the number of the ex$-variables leads to this output:
id ex3 ex2 ex1 ex ran
1 1 0.8 0.10 0.04 3 0.5
2 2 0.2 0.40 0.30 1 0.7
3 3 0.3 0.04 0.50 1 0.6
Or if I want the lowest value as new value for "ex" (because it is "ex2"):
id ex3 ex2 ex1 ex ran
1 1 0.8 0.10 0.04 1 0.5
2 2 0.2 0.40 0.30 1 0.7
3 3 0.3 0.04 0.50 1 0.6
To sum it up: I want to refer to the variable-names of the sorted "ex$"-values to create new values for "ex" within ifelse in mutate.
CodePudding user response:
One way could be using parse_number
from readr
package that extracts the numbers from ex1, ex2, ex3. Depending on the logic you can do:
parse_number(name[1])
here 1 is the position in the column you can use 2 or 3 dependig what fits best your logic.
library(dplyr)
library(tidyr)
library(readr)
dat %>%
pivot_longer(
cols = ex1:ex3
) %>%
arrange(id, desc(value)) %>%
group_by(id) %>%
mutate(ex = ifelse(ran <= value[1] & ran > sum(value[2], value[3]), parse_number(name[3]), ex)) %>%
pivot_wider(
names_from=name
)
id ex ran ex1 ex2 ex3
<dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 1 3 0.5 0.8 0.1 0.04
2 2 1 0.7 0.2 0.4 0.3
3 3 1 0.6 0.3 0.04 0.5
For full name:
mibrary(dplyr)
library(tidyr)
library(readr)
dat %>%
pivot_longer(
cols = ex1:ex3
) %>%
arrange(id, desc(value)) %>%
group_by(id) %>%
mutate(ex = ifelse(ran <= value[1] & ran > sum(value[2], value[3]), name[1], as.character(ex))) %>%
pivot_wider(
names_from=name
)
id ex ran ex1 ex2 ex3
<dbl> <chr> <dbl> <dbl> <dbl> <dbl>
1 1 ex1 0.5 0.8 0.1 0.04
2 2 1 0.7 0.2 0.4 0.3
3 3 1 0.6 0.3 0.04 0.5