I am able to write a for loop that adds a row to a dataframe each time as with the following example:
from random import randint
import numpy as np
dataframe = []
for i in range(2):
value = randint(0,10)
for j in range(2):
mean = np.mean(value)
dataframe.append(mean)
cols=['mean']
result=pd.DataFrame(dataframe, columns = cols)
result
This outputs a dataframe that looks like:
mean
8
8
9
9
How could I output a dataframe that looks like
mean_1 mean_2 mean_3 mean_4
8 8 9 9
CodePudding user response:
import pandas as pd
from random import randint
import numpy as np
m = 2
n = 2
dataframe = pd.DataFrame([0], columns = ['mean_1'])
for i in range(m):
value = randint(0,10)
for j in range(n):
mean = np.mean(value)
dataframe['mean_' str(n*i j 1)] = mean
CodePudding user response:
from random import randint
import numpy as np
import pandas as pd
dataframe = []
count = 1
cols = []
for i in range(2):
value = randint(0,10)
for j in range(2):
mean = np.mean(value)
dataframe.append(mean)
cols.append('mean_' str(count))
count = count 1
df=pd.DataFrame(columns=cols)
a_series = pd.Series(dataframe, index = cols)
d = df.append(a_series, ignore_index=True)