I have been attempting to use tfio.IODataset.from_parquet
to train a model large parquet files. Below is a minimal example of the parquet loading procedure I am using:
pd.DataFrame({'a':[.1,.2], 'b':[.01,.02]}).to_parquet('file.parquet')
ds = tfio.IODataset.from_parquet('file.parquet', columns = ['a','b'])
for batch in ds.batch(5):
print(batch)
OrderedDict([('a', <tf.Tensor: shape=(2,), dtype=float64, numpy=array([0.1, 0.2])>), ('b', <tf.Tensor: shape=(2,), dtype=float64, numpy=array([0.01, 0.02])>)])
The batched dataset is type OrderedDict
with keys a
and b
. For training my model I would like something more akin to a "dense" feature vector, instead of two separate keys in an ordereddict. How can I convert the OrderedDict to a dense tuple?
Try 1
As per this example, I tried the following to transform the dataset into "dense" features:
def make_dense(features):
features = tf.stack(list(features), axis=1)
return features
ds = ds.map(make_dense)
Unfortunately, that throws errors. I have tried several variations to this theme, including
- changing
axis=1
toaxis=0
- using
ds = ds.map(lambda *items: tf.stack(items))
instead of mymake_dense
function.
I imagine this is a very basic operation for IODataset
; I just do not know how to accomplish it.
CodePudding user response:
Not the prettiest solution, but you could try something like this:
import pandas as pd
import tensorflow_io as tfio
pd.DataFrame({'a':[.1,.2], 'b':[.01,.02]}).to_parquet('file.parquet')
ds = tfio.IODataset.from_parquet('file.parquet', columns = ['a','b'])
def option1(features):
keys, values = tf.TensorArray(dtype=tf.string, size=0, dynamic_size=True), tf.TensorArray(dtype=tf.float64, size=0, dynamic_size=True)
for k, v in features.items():
keys = keys.write(keys.size(), k)
values = values.write(values.size(), v)
return (keys.stack(), values.stack())
def option2(features):
ta = tf.TensorArray(dtype=tf.float64, size=0, dynamic_size=True)
for _, v in features.items():
ta = ta.write(ta.size(), v)
return ta.stack()
option1_ds = ds.map(option1)
for batch in option1_ds.batch(5):
print(batch)
print()
option2_ds = ds.map(option2)
for batch in option2_ds.batch(5):
print(batch)
(<tf.Tensor: shape=(2, 2), dtype=string, numpy=
array([[b'a', b'b'],
[b'a', b'b']], dtype=object)>, <tf.Tensor: shape=(2, 2), dtype=float64, numpy=
array([[0.1 , 0.01],
[0.2 , 0.02]])>)
tf.Tensor(
[[0.1 0.01]
[0.2 0.02]], shape=(2, 2), dtype=float64)