I have a very long data frame (~10,000 rows), in which two of the columns look something like this.
A B
1 5.5
1 5.5
2 201
9 18
9 18
2 201
9 18
... ...
Just scrubbing through the data it seems that the two columns are "paired" together, but is there any way of explicitly checking this?
CodePudding user response:
If you run this you will see how many unique values of B
there are for each value of A
tapply(dat$B, dat$A, function(x) length(unique(x)))
So if the max of this vector is 1 then there are no values of A
that have more than one corresponding value of B
.
CodePudding user response:
You want to know if value x in column A always means value y in column B? Let's group by A and count the distinct values in B:
df <- data.frame(
A = c(1, 1, 2, 9, 9, 2, 9),
B = c(5.5, 5.5, 201, 18, 18, 201, 18)
)
df %>%
group_by(A) %>%
distinct(B) %>%
summarize(n_unique = n())
# A tibble: 3 x 2
A n_unique
<dbl> <int>
1 1 1
2 2 1
3 9 1
If we now alter the df to the case that this is not true:
df <- data.frame(
A = c(1, 1, 2, 9, 9, 2, 9),
B = c(5.5, 5.4, 201, 18, 18, 201, 18)
)
df %>%
group_by(A) %>%
distinct(B) %>%
summarize(n_unique = n())
# A tibble: 3 x 2
A n_unique
<dbl> <int>
1 1 2
2 2 1
3 9 1
Observe the increased count for group 1. As you have more than 10000 rows, what remains is to see whether or not there is at least one instance that has n_unique > 1, for instance by filter(n_unique > 1)