I have 12 columns filled with wages. I want to calculate the mean but my output is 12 different means from each column, but I want one mean which is calculated with the whole dataset as one. This is how my df looks:
Month 1 Month 2 Month 3 Month 4 ... Month 9 Month 10 Month 11 Month 12
0 1429.97 2816.61 2123.29 2123.29 ... 2816.61 2816.61 1429.97 1776.63
1 3499.53 3326.20 3499.53 2112.89 ... 1939.56 2806.21 2632.88 2459.55
2 2599.95 3119.94 3813.26 3466.60 ... 3466.60 3466.60 2946.61 2946.61
3 2599.95 2946.61 3466.60 2773.28 ... 2253.29 3119.94 1906.63 2773.28
I used this code to calculate the mean:
mean = df.mean()
Do i have to convert these 12 columns into one column or how can i calculate one mean?
CodePudding user response:
Just call the mean again to get the mean of those 12 values:
df.mean().mean()
CodePudding user response:
Use numpy.mean
with convert values to 2d array:
mean = np.mean(df.to_numpy())
print (mean)
2914.254166666667
Or use DataFrame.melt
:
mean = df.melt()['value'].mean()
print (mean)
2914.254166666666
CodePudding user response:
You can also use stack
:
df.stack().mean()
Suppose this dataframe:
>>> df
A B C D E F G H
0 60 1 59 25 8 27 34 43
1 81 48 32 30 60 3 90 22
2 66 15 21 5 23 36 83 46
3 56 42 14 86 41 64 89 56
4 28 53 89 89 52 13 12 39
5 64 7 2 16 91 46 74 35
6 81 81 27 67 26 80 19 35
7 56 8 17 39 63 6 34 26
8 56 25 26 39 37 14 41 27
9 41 56 68 38 57 23 36 8
>>> df.stack().mean()
41.6625