I am trying to scraping the table and write in a dataframe they show me a typeerror
. How to resolve these errors?
from selenium.webdriver.support.ui import WebDriverWait
from selenium.webdriver.support.ui import WebDriverWait
from selenium.webdriver.common.by import By
from selenium.webdriver.support import expected_conditions as EC
from selenium.webdriver.support.select import Select
from selenium import webdriver
import pandas as pd
temp=[]
driver= webdriver.Chrome('C:\Program Files (x86)\chromedriver.exe')
driver.get("https://www.fami-qs.org/certified-companies-6-0.html")
WebDriverWait(driver, 20).until(EC.frame_to_be_available_and_switch_to_it((By.CSS_SELECTOR,"iframe[title='Inline Frame Example']")))
headers=WebDriverWait(driver, 20).until(EC.visibility_of_element_located((By.XPATH, "//table[@id='sites']//thead"))).text
rows=WebDriverWait(driver, 20).until(EC.visibility_of_element_located((By.XPATH, "//table[@id='sites']//tbody"))).text
temp.append(rows)
df = pd.DataFrame(temp,columns=headers)
print(df)
In headers I pass the data FAMI-QS Number
... Expiry date
while in rows I will pass the FAM-0694
... 2022-09-04
CodePudding user response:
To scrap the FAMI QS Number and Site Name column you need to create a list of the desired texts using List Comprehension inducing WebDriverWait for the visibility_of_all_elements_located() and you can use either of the following Locator Strategies:
Code Block:
driver = webdriver.Chrome(service=s, options=options) driver.get("https://www.fami-qs.org/certified-companies-6-0.html") FAMI_QS_Numbers = [] Site_Names = [] WebDriverWait(driver, 20).until(EC.frame_to_be_available_and_switch_to_it((By.CSS_SELECTOR,"iframe[title='Inline Frame Example']"))) FAMI_QS_Numbers.extend([my_elem.text for my_elem in WebDriverWait(driver, 20).until(EC.visibility_of_all_elements_located((By.XPATH, "//table[@id='sites']//tbody//tr/descendant::td[1]")))]) Site_Names.extend([my_elem.text for my_elem in WebDriverWait(driver, 20).until(EC.visibility_of_all_elements_located((By.XPATH, "//table[@id='sites']//tbody//tr//td/p")))]) df = pd.DataFrame(data=list(zip(FAMI_QS_Numbers, Site_Names)), columns=['FAMI QS Number', 'Site Name']) print(df) driver.quit()
Console Output:
FAMI QS Number Site Name 0 FAM-1293 AmTech Ingredients 1 FAM-0841 3F FEED & FOOD S L 2 FAM-1361 5N Plus Additives GmbH 3 FAM-1301-01 A & V Corp. Limited 4 FAM-1146 A. E. Fischer-Chemie GmbH & Co. KG 5 FAM-1589 A.M FOOD CHEMICAL CO LIMITED 6 FAM-0613-01 A.W.P. S.r.l 7 FAM-0867 AB AGRI POLSKA Sp. z o.o. 8 FAM-1510-02 AB Vista 9 FAM-1510-01 AB Vista *
CodePudding user response:
You can get all table data from api calls html response using only pandas as follows:
Code:
import requests
import pandas as pd
headers = {'User-Agent':'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/92.0.4515.131 Safari/537.36'}
url = "https://famiqs.viasyst.net/certified-sites"
req = requests.get(url,headers=headers)
table = pd.read_html(req.text)
df = table[0]#.to_csv('info.csv',index = False)
print(df)
Output:
FAMI-QS Number ... Expiry date
0 FAM-0694 ... 2022-09-04
1 FAM-1491 ... 2022-10-17
2 FAM-ISFSF-003 ... 2022-10-27
3 FAM-1533 ... 2022-10-31
4 FAM-1090 ... 2022-11-13
... ... ... ...
1472 FAM-1761-01 ... 2024-10-27
1473 FAM-1796 ... 2024-09-29
1474 FAM-1427-01 ... 2023-12-01
1475 FAM-1861 ... 2024-11-22
1476 FAM-0005-07 ... 2024-11-25
[1477 rows x 7 columns]