By "smallest column" I mean the column for which the sum of the elements is the least (i.e. most negative). Here is my attempt but it isn't very efficient because I build a whole list of the sums of the columns. h
is a scipy.sparse
matrix, k
is the number of indices requested. It's not important that the result be sorted.
def indices_of_smallest_columns(h,k):
size=h.get_shape()[0]
arr=[h.tocsc().getcol(i).sum() for i in range(size)]
return np.argpartition(arr,k)[:k]
CodePudding user response:
In [1]: from scipy import sparse
In [2]: M = sparse.random(10,10,.2)
In [3]: M
Out[3]:
<10x10 sparse matrix of type '<class 'numpy.float64'>'
with 20 stored elements in COOrdinate format>
Your sum list:
In [5]: [M.tocsc().getcol(i).sum() for i in range(10)]
Out[5]:
[1.5659425833256746,
1.7665038140319338,
0.0,
0.6422706809316442,
0.24922121199061487,
1.439977730279475,
0.17827454933565012,
1.7955436609690185,
0.4275656628694753,
1.4029484081520989]
Getting the matrix sum directly:
In [6]: M.sum(axis=0)
Out[6]:
matrix([[1.56594258, 1.76650381, 0. , 0.64227068, 0.24922121,
1.43997773, 0.17827455, 1.79554366, 0.42756566, 1.40294841]])
sparse
uses matrix multiplication to get sums like this.
Timings:
In [7]: timeit [M.tocsc().getcol(i).sum() for i in range(10)]
2.87 ms ± 90.8 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
In [8]: timeit M.sum(axis=0)
161 µs ± 10.2 µs per loop (mean ± std. dev. of 7 runs, 10000 loops each)
If the matrix is already csc
, times are even better:
In [12]: %%timeit h=M.tocsc()
...: h.sum(axis=0)
...:
...:
54.5 µs ± 1.23 µs per loop (mean ± std. dev. of 7 runs, 10000 loops each)