I have defined a image, img_shape
, its shape is (28,28,1) before this model,
def make_discriminator(img_shape):
return keras.Sequential([
keras.layers.Dropout(0.3),
keras.layers.Conv2D(32, 5, strides = 2,
padding='same',
input_shape = img_shape,
use_bias = False),
keras.layers.BatchNormalization(),
keras.layers.LeakyReLU(),
keras.layers.Conv2D(64, 5, strides = 2,
padding = 'same',
use_bias = False),
keras.layers.BatchNormalization(),
keras.layers.LeakyReLU(),
keras.layers.Flatten(),
keras.layers.Dense(1)
], "Discriminator")
Then I tried to directly use it as input and print the structure of this model,
D = make_discriminator(img_shape = img_shape)
print(D.summary())
However, it shows
This model has not yet been built. Build the model first by calling
build()
or by calling the model on a batch of data.
But when I tried to add build() before summary,
D = make_discriminator(img_shape = img_shape)
it shows
build() got an unexpected keyword argument 'img_shape'
I dont know how to solve this problem...and the process of creating image is below,
import keras
import tensorflow as tf
import tensorflow_datasets as tfds
fmist = tfds.load('fashion_mnist')
def process(data):
img = tf.cast(data['image'], tf.float32)
lab = data['label']
img = (img / 255.0 - 0.5) * 2.0
return img
BATCH_SIZE = 256
train = fmist['train'].shuffle(10000).batch(BATCH_SIZE).\
map(process).prefetch(tf.data.experimental.AUTOTUNE)
img_shape = tf.data.experimental.get_structure(train).shape[1:]
print("image shape:", img_shape)
CodePudding user response:
Try discriminator.build(input_shape=(1, 28, 28, 1))
:
def make_discriminator(img_shape):
return tf.keras.Sequential([
tf.keras.layers.Dropout(0.3),
tf.keras.layers.Conv2D(32, 5, strides = 2,
padding='same',
input_shape = img_shape,
use_bias = False),
tf.keras.layers.BatchNormalization(),
tf.keras.layers.LeakyReLU(),
tf.keras.layers.Conv2D(64, 5, strides = 2,
padding = 'same',
use_bias = False),
tf.keras.layers.BatchNormalization(),
tf.keras.layers.LeakyReLU(),
tf.keras.layers.Flatten(),
tf.keras.layers.Dense(1)
], "Discriminator")
discriminator = make_discriminator((28, 28, 1))
discriminator.build(input_shape=(1, 28, 28, 1))
print(discriminator.summary())
Or set the input_shape
in the first layer of your model. Then, the remaining output shapes will be inferred and you do not have to call model.build()
:
def make_discriminator(img_shape):
return tf.keras.Sequential([
tf.keras.layers.Dropout(0.3, input_shape = img_shape),
tf.keras.layers.Conv2D(32, 5, strides = 2,
padding='same',
use_bias = False),
tf.keras.layers.BatchNormalization(),
tf.keras.layers.LeakyReLU(),
tf.keras.layers.Conv2D(64, 5, strides = 2,
padding = 'same',
use_bias = False),
tf.keras.layers.BatchNormalization(),
tf.keras.layers.LeakyReLU(),
tf.keras.layers.Flatten(),
tf.keras.layers.Dense(1)
], "Discriminator")
discriminator = make_discriminator((28, 28, 1))
print(discriminator.summary())