I have a data.table data_dt
on which I want to run linear regression so that user can choose the number of columns in groups G1
and G2
using variable n_col
. The following code works perfectly but it is slow due to extra time spent on creating matrices. To improve the performance of the code below, is there a way to remove Steps 1, 2, and 3 altogether by tweaking the formula of lm
function and still get the same results?
library(timeSeries)
library(data.table)
data_dt = as.data.table(LPP2005REC[, -1])
n_col = 3 # Choose a number from 1 to 3
######### Step 1 ######### Create independent variable
xx <- as.matrix(data_dt[, "SPI"])
######### Step 2 ######### Create Group 1 of dependent variables
G1 <- as.matrix(data_dt[, .SD, .SDcols=c(1:n_col 2)])
######### Step 3 ######### Create Group 2 of dependent variables
G2 <- as.matrix(data_dt[, .SD, .SDcols=c(1:n_col 2 n_col)])
lm(xx ~ G1 G2)
Results -
summary(lm(xx ~ G1 G2))
Call:
lm(formula = xx ~ G1 G2)
Residuals:
Min 1Q Median 3Q Max
-3.763e-07 -4.130e-09 3.000e-09 9.840e-09 4.401e-07
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) -4.931e-09 3.038e-09 -1.623e 00 0.1054
G1LMI -5.000e-01 4.083e-06 -1.225e 05 <2e-16 ***
G1MPI -2.000e 00 4.014e-06 -4.982e 05 <2e-16 ***
G1ALT -1.500e 00 5.556e-06 -2.700e 05 <2e-16 ***
G2LPP25 3.071e-04 1.407e-04 2.184e 00 0.0296 *
G2LPP40 -5.001e 00 2.360e-04 -2.119e 04 <2e-16 ***
G2LPP60 1.000e 01 8.704e-05 1.149e 05 <2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 5.762e-08 on 370 degrees of freedom
Multiple R-squared: 1, Adjusted R-squared: 1
F-statistic: 1.104e 12 on 6 and 370 DF, p-value: < 2.2e-16
CodePudding user response:
This may be easier by just creating the formula with reformulate
out <- lm(reformulate(names(data_dt)[c(1:n_col 2, 1:n_col 2 n_col)],
response = 'SPI'), data = data_dt)
-checking
> summary(out)
Call:
lm(formula = reformulate(names(data_dt)[c(1:n_col 2, 1:n_col
2 n_col)], response = "SPI"), data = data_dt)
Residuals:
Min 1Q Median 3Q Max
-3.763e-07 -4.130e-09 3.000e-09 9.840e-09 4.401e-07
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) -4.931e-09 3.038e-09 -1.623e 00 0.1054
LMI -5.000e-01 4.083e-06 -1.225e 05 <2e-16 ***
MPI -2.000e 00 4.014e-06 -4.982e 05 <2e-16 ***
ALT -1.500e 00 5.556e-06 -2.700e 05 <2e-16 ***
LPP25 3.071e-04 1.407e-04 2.184e 00 0.0296 *
LPP40 -5.001e 00 2.360e-04 -2.119e 04 <2e-16 ***
LPP60 1.000e 01 8.704e-05 1.149e 05 <2e-16 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 5.762e-08 on 370 degrees of freedom
Multiple R-squared: 1, Adjusted R-squared: 1
F-statistic: 1.104e 12 on 6 and 370 DF, p-value: < 2.2e-16