The given dataframe looks like this:
sensorA sensorB deviceA deviceB inputA inputB machineA machineB flagA flagB mainA
Time
2021-11-26 20:20:00 379.0 0.0 0.0 489.0 0.77 35.0 0.0 51.0 -13.0 230.0 1.6
2021-11-26 20:30:00 344.0 0.0 0.0 143.0 0.76 31.0 0.0 50.0 -11.0 230.0 1.8
I want to map this to a the following format separting the individual columns into a combination of Field and Tag.
Time | Type | Tag | Value |
---|---|---|---|
2021-11-26 20:20:00 | sensor | a | 999 |
I have tried mutiple directions to approch this using multi indexing, groupby etc but cant seem to get around on how to exactly impliment this ?
Any help would be appreciated!!
CodePudding user response:
Edit
If your column names contain '_'
as separator, you can use:
df.columns = df.columns.str.split('_', expand=True).rename(['Type', 'Tag'])
out = df.unstack().rename('Value').reset_index(level=['Type', 'Tag']).sort_index()
Extract type/tag from column names with a regular expression:
types = ['sensor', 'device', 'input', 'machine', 'flag', 'main']
pat = fr"({'|'.join(types)})(.*)"
df.columns = pd.MultiIndex.from_frame(df.columns.str.extract(pat),
names=['Type', 'Tag'])
out = df.unstack().rename('Value').reset_index(level=['Type', 'Tag']).sort_index()
Output:
>>> out
Type Tag Value
Time
2021-11-26 20:20:00 sensor A 379.00
2021-11-26 20:20:00 flag B 230.00
2021-11-26 20:20:00 flag A -13.00
2021-11-26 20:20:00 machine B 51.00
2021-11-26 20:20:00 machine A 0.00
2021-11-26 20:20:00 main A 1.60
2021-11-26 20:20:00 input A 0.77
2021-11-26 20:20:00 input B 35.00
2021-11-26 20:20:00 device B 489.00
2021-11-26 20:20:00 device A 0.00
2021-11-26 20:20:00 sensor B 0.00
2021-11-26 20:30:00 input A 0.76
2021-11-26 20:30:00 device A 0.00
2021-11-26 20:30:00 input B 31.00
2021-11-26 20:30:00 machine A 0.00
2021-11-26 20:30:00 sensor B 0.00
2021-11-26 20:30:00 machine B 50.00
2021-11-26 20:30:00 flag A -11.00
2021-11-26 20:30:00 sensor A 344.00
2021-11-26 20:30:00 flag B 230.00
2021-11-26 20:30:00 device B 143.00
2021-11-26 20:30:00 main A 1.80