Just wondering if there is a shortcut, rather than iterating through the structure?
# Column Non-Null Count Dtype
--- ------ -------------- -----
0 ID 3 non-null int64
1 Name 3 non-null object
2 ForecastStartDate 3 non-null object
3 ForecastFinishDate 3 non-null object
4 PlannedStartDate 2 non-null object
5 PlannedFinishDate 3 non-null object
6 ActualStartDate 2 non-null datetime64[ns]
7 ActualFinishDate 0 non-null datetime64[ns]
items 2 through 7 shoud ideally all be datetime64[ns]
CodePudding user response:
Below code can work, but you have to give a matching date-time format format="%Y-%m-%d %H:%M:%S.%f"
.
changeColumns = ['ForecastStartDate','ForecastFinishDate','PlannedStartDate','PlannedFinishDate']
df[changeColumns] = df[changeColumns].apply(pd.to_datetime, format='%Y-%m-%d %H:%M:%S.%f')