I have implemented Dijkstra's algorithm but I have a problem. It always prints the same minimum path while there may be other paths with the same weight.
How could I change my algorithm so that it randomly selects the neighbors with the same weight?
My algorithm is below:
def dijkstra_algorithm(graph, start_node):
unvisited_nodes = list(graph.get_nodes())
# We'll use this dict to save the cost of visiting each node and update it as we move along the graph
shortest_path = {}
# We'll use this dict to save the shortest known path to a node found so far
previous_nodes = {}
# We'll use max_value to initialize the "infinity" value of the unvisited nodes
max_value = sys.maxsize
for node in unvisited_nodes:
shortest_path[node] = max_value
# However, we initialize the starting node's value with 0
shortest_path[start_node] = 0
# The algorithm executes until we visit all nodes
while unvisited_nodes:
# The code block below finds the node with the lowest score
current_min_node = None
for node in unvisited_nodes: # Iterate over the nodes
if current_min_node == None:
current_min_node = node
elif shortest_path[node] < shortest_path[current_min_node]:
current_min_node = node
# The code block below retrieves the current node's neighbors and updates their distances
neighbors = graph.get_outgoing_edges(current_min_node)
for neighbor in neighbors:
tentative_value = shortest_path[current_min_node] graph.value(current_min_node, neighbor)
if tentative_value < shortest_path[neighbor]:
shortest_path[neighbor] = tentative_value
# We also update the best path to the current node
previous_nodes[neighbor] = current_min_node
# After visiting its neighbors, we mark the node as "visited"
unvisited_nodes.remove(current_min_node)
return previous_nodes, shortest_path
CodePudding user response:
# The code block below finds all the min nodes
# and randomly chooses one for traversal
min_nodes = []
for node in unvisited_nodes: # Iterate over the nodes
if len(min_nodes) == 0:
min_nodes.append(node)
elif shortest_path[node] < shortest_path[min_nodes[0]]:
min_nodes = [node]
else:
# this is the case where 2 nodes have the same cost
# we are going to take all of them
# and at the end choose one randomly
min_nodes.append(node)
current_min_node = random.choice(min_nodes)
What the code does is as follows:
- Instead of taking the first smallest element, it creates a list of all the smallest elements.
- At the end it choose one of the smallest elements randomly.
This will both guarantee the Dijkstra invariant and choose a random path among the cheapest.
CodePudding user response:
probably just try something like this
random.shuffle(neighbors)
for neighbor in neighbors:
...
which should visit the neighbors randomly (this assumes neighbors is a list or tuple... if its a generator call list on it first...