I have these three dfs:
id | name
------------------------
1 | {"value": "bob"}
1 | {"value": "Robert"}
2 | {"value": "Mary"}
id | dob
----------------------------
1 | {"value": "21-04-1988"}
2 | {"value": null}
id | country
--------------------
1 | {"value": "IT"}
1 | {"value": "DE"}
2 | {"value": "FR"}
2 | {"value": "ES"}
And I want to combine them, but I don't want to duplicate information.
id | name | dob |country
----------------------------------------------------------------------
1 | {"value": "bob"} | {"value": "21-04-1988"} | {"value": "IT"}
1 | {"value": "Robert"} | Null | {"value": "DE"}
2 | {"value": "Mary"} | {"value": Null} | {"value": "FR"}
2 | Null | Null | {"value": "ES"}
I tried with a multiple outer join but it doesn't result in the above table.
name = spark.createDataFrame(
[
(1, {"value" : "bob"}), # create your data here, be consistent in the types.
(1, {"value" : "Robert"}),
(2, {"value" : "Mary"})
],
["id", "name"] # add your column names here
)
dob = spark.createDataFrame(
[
(1, {"value" : "21-04-1988"}), # create your data here, be consistent in the types.
(2, {"value" : None})
],
["id", "dob"] # add your column names here
)
country = spark.createDataFrame(
[
(1, {"value" : "IT"}), # create your data here, be consistent in the types.
(1, {"value" : "DE"}),
(2, {"value" : "FR"}),
(2, {"value" : "ES"}),
],
["id", "country"] # add your column names here
)
(name.join(dob, "id", "outer").join(country, "id", "outer")).show()
produces this:
id name dob country
---------------------------------------------------------------
1 | {"value":"Robert"} |{"value":"21-04-1988"} |{"value":"DE"}
1 | {"value":"Robert"} |{"value":"21-04-1988"} |{"value":"IT"}
1 | {"value":"bob"} |{"value":"21-04-1988"} |{"value":"DE"}
1 | {"value":"bob"} |{"value":"21-04-1988"} |{"value":"IT"}
2 | {"value":"Mary"} |{"value":null} |{"value":"ES"}
2 | {"value":"Mary"} |{"value":null} |{"value":"FR"}
Now I understand that this is exactly how a full outer join would work - but I don't need those extra duplicate information in it (I need to contain the number of rows as much as possible).
Any clue?
CodePudding user response:
You can add a column id2
to all the three dataframes using row_number()
for example then use it along with id
as the join condition:
from pyspark.sql import functions as F, Window
w = Window.partitionBy("id").orderBy(F.lit(None)) # change this if you have some column to use for ordering
name = name.withColumn("id2", F.row_number().over(w))
dob = dob.withColumn("id2", F.row_number().over(w))
country = country.withColumn("id2", F.row_number().over(w))
result = (name.join(dob, ["id", "rn"], "full")
.join(country, ["id", "rn"], "full")
.drop("rn")
)
result.show(truncate=False)
# --- ----------------- --------------------- -------------
#|id |name |dob |country |
# --- ----------------- --------------------- -------------
#|1 |{value -> bob} |{value -> 21-04-1988}|{value -> IT}|
#|1 |{value -> Robert}|null |{value -> DE}|
#|2 |{value -> Mary} |{value -> null} |{value -> FR}|
#|2 |null |null |{value -> ES}|
# --- ----------------- --------------------- -------------