I'm somewhat new to numpy so this might be a dumb question, but here goes:
Let's say I have a tensor of any shape and size, say (100,5,5)
or (3,3,10,15,4)
. I have a randomly generated list of indices for points I want to replace with np.nan
. For a (3,3,3)
test case, it would be as follows:
>> data = np.random.randn(3,3,3)
>> data
array([[[ 0.21368315, -1.42814113, 1.23021783],
[ 0.25835315, 0.44775156, -1.20489094],
[ 0.25928972, 0.39486046, -1.79189447]],
[[ 2.24080908, -0.89617961, -0.29550817],
[ 0.21756087, 1.33996913, -1.24418745],
[-0.63617598, 0.56848439, 0.8175564 ]],
[[ 0.61367002, -1.16104071, -0.53488283],
[ 1.0363354 , -0.76888041, 1.24524786],
[-0.84329375, -0.61744489, 1.50502058]]])
>> idxs = np.argwhere(np.isfinite(data))
>> dropidxs = idxs[np.random.choice(idxs.shape[0], 3, replace=False)]
>> dropidxs
array([[1, 1, 1],
[2, 0, 2],
[2, 1, 0]])
How do I replace the corresponding values? Previously, when I was only dealing with the 3D case, I did it using the following.
for idx in dropidxs:
i,j,k = dropidxs[idx]
missingCube[i,j,k] = np.nan
But now, I want the function to be able to handle tensors of any size. I've tried
for idx in dropidxs:
missingCube[idx] = np.nan
and
missingCube[dropidxs] = np.nan
But both (unsurprisingly) end up removing a corresponding slice along axis=0
. How should I approach this? Is there an easier way to achieve what I'm trying to do?
CodePudding user response:
Is it what you're searching for:
import numpy as np
x = np.random.randn(10, 3, 3, 3)
new_value = 0
x[x < 0] = new_value
or
x[x == -inf] = 0
CodePudding user response:
In [486]: data = np.random.randn(3,3,3)
With this creation all terms are finite, so nonzero
returns a tuple of (27,) arrays:
In [487]: idx = np.nonzero(np.isfinite(data))
In [488]: len(idx)
Out[488]: 3
In [489]: idx[0].shape
Out[489]: (27,)
argwhere
produces the same numbers, but in a 2d array:
In [490]: idxs = np.argwhere(np.isfinite(data))
In [491]: idxs.shape
Out[491]: (27, 3)
So you select a subset.
In [492]: dropidxs = idxs[np.random.choice(idxs.shape[0], 3, replace=False)]
In [493]: dropidxs.shape
Out[493]: (3, 3)
In [494]: dropidxs
Out[494]:
array([[1, 1, 0],
[2, 1, 2],
[2, 1, 1]])
We could have generated the same subset by x = np.random.choice(...)
, and applying that x
to the arrays in idxs
. But in this case, the argwhere array is easier to work with.
But to apply that array to indexing we still need a tuple of arrays:
In [495]: tup = tuple([dropidxs[:,i] for i in range(3)])
In [496]: tup
Out[496]: (array([1, 2, 2]), array([1, 1, 1]), array([0, 2, 1]))
In [497]: data[tup]
Out[497]: array([-0.27965058, 1.2981397 , 0.4501406 ])
In [498]: data[tup]=np.nan
In [499]: data
Out[499]:
array([[[-0.4899279 , 0.83352547, -1.03798762],
[-0.91445783, 0.05777183, 0.19494065],
[ 0.6835925 , -0.47846423, 0.13513958]],
[[-0.08790631, 0.30224828, -0.39864576],
[ nan, -0.77424244, 1.4788093 ],
[ 0.41915952, -0.09335664, -0.47359613]],
[[-0.40281937, 1.64866377, -0.40354504],
[ 0.74884493, nan, nan],
[ 0.13097487, -1.63995208, -0.98857852]]])
Or we could index with:
In [500]: data[dropidxs[:,0],dropidxs[:,1],dropidxs[:,2]]
Out[500]: array([nan, nan, nan])
Actually, a transpose of dropidxs
might be be more convenient:
In [501]: tdrop = dropidxs.T
In [502]: tuple(tdrop)
Out[502]: (array([1, 2, 2]), array([1, 1, 1]), array([0, 2, 1]))
In [503]: data[tuple(tdrop)]
Out[503]: array([nan, nan, nan])
Sometimes we can use *
to expand a list/array into a tuple, but not when indexing:
In [504]: data[*tdrop]
File "<ipython-input-504-cb619d907adb>", line 1
data[*tdrop]
^
SyntaxError: invalid syntax
but we can create the tuple with:
In [506]: data[(*tdrop,)]
Out[506]: array([nan, nan, nan])
CodePudding user response:
You can choose from flattened indices and convert back to data indices to set elements to np.nan
. Here with a seed(41) to make results reproducible, choosing 3 elements.
import numpy as np
data = np.random.randn(3,3,3)
rng = np.random.default_rng(41)
idx = rng.choice(np.arange(data.size), 3, replace=False)
data[np.unravel_index(idx, data.shape)] = np.nan
data
Output
array([[[ 0.13180452, -0.81228319, -0.04456739],
[ 0.53060077, -0.2246579 , 1.83926463],
[-0.38670047, -0.53703577, 0.49275628]],
[[ 0.36671354, 1.44012848, -0.57209412],
[ 0.53960111, -1.06578638, 1.10669842],
[ 1.1772824 , nan, -0.82792041]],
[[-0.03352594, 0.29351109, 0.57021538],
[-0.33291872, nan, 0.04675677],
[ nan, 2.59450517, -1.9579655 ]]])