Consider these two dataframes:
index = [0, 1, 2, 3]
columns = ['col0', 'col1']
data = [['A', 'D'],
['B', 'E'],
['C', 'F'],
['A', 'D']
]
df1 = pd.DataFrame(data, index, columns)
df2 = pd.DataFrame(data = [10, 20, 30, 40], index = pd.MultiIndex.from_tuples([('A', 'D'), ('B', 'E'), ('C', 'F'), ('X', 'Z')]), columns = ['col2'])
I want to add a column to df1 that tells me the value from looking at df2. The expected result would be like this:
index = [0, 1, 2, 3]
columns = ['col0', 'col1', 'col2']
data = [['A', 'D', 10],
['B', 'E', 20],
['C', 'F', 30],
['A', 'D', 10]
]
df3 = pd.DataFrame(data, index, columns)
What is the best way to achieve this? I am wondering if it should be done with a vector operation or a lambda operation or perhaps something even simpler, but I'm unsure.
CodePudding user response:
Merge normally:
pd.merge(df1, df2, left_on=["col0", "col1"], right_index=True, how="left")
Output:
col0 col1 col2
0 A D 10
1 B E 20
2 C F 30
3 A D 10
CodePudding user response:
try this:
indexes = list(map(tuple, df1.values))
df1["col2"] = df2.loc[indexes].values
Output:
#print(df1)
col0 col1 col2
0 A D 10
1 B E 20
2 C F 30
3 A D 10