I have data as follows:
library(tidyverse)
library(ggplot)
dat <- structure(list(group_size = structure(c(
6L, 3L, 3L, 4L, 1L, 2L,
2L, 1L, 3L, 6L, 2L, 6L, 2L, 2L, 1L, 1L, 4L, 1L, 3L, 2L
), .Label = c(
"(0,50]",
"(50,100]", "(100,150]", "(150,200]", "(200,250]", "(250,3e 03]"
), class = "factor"), amount = c(
409, 101, 103, 198, 40, 63,
69, 49, 126, 304, 91, 401, 96, 63, 36, 1, 177, 7, 112, 61
), group_sum = c(
1114,
442, 442, 375, 133, 443, 443, 133, 442, 1114, 443, 1114, 443,
443, 133, 133, 375, 133, 442, 443
), count = c(
3L, 4L, 4L, 2L,
5L, 6L, 6L, 5L, 4L, 3L, 6L, 3L, 6L, 6L, 5L, 5L, 2L, 5L, 4L, 6L
)), row.names = c(NA, -20L), class = c("data.table", "data.frame"))
dat %>%
as_tibble() %>%
ggplot(aes(x = group_size))
geom_col(aes(y = group_sum), position = "identity", color = "red", fill = "transparent")
geom_label(
data = dat %>% distinct(group_size, .keep_all = TRUE),
mapping = aes(y = group_sum, label = group_sum),
color = "red"
)
geom_col(aes(y = count * 10), position = "identity", color = "blue", fill = "transparent")
geom_label(
data = dat %>% distinct(count, .keep_all = TRUE),
mapping = aes(y = count * 10, label = count),
color = "blue"
)
scale_y_continuous(sec.axis = sec_axis(trans = ~ . / 10, name = "Count"))
In addition, I have a number of values:
situation_A <- 40 # Belongs to the first category
situation_B <- 120 # Belongs to the third category
situation_C <- 75 # Belongs to the second category
situation_D <- 155 # Belongs to the fourth category
situation_E <- 125 # Belongs to the third category
What I would like to do is to add these situations to their respective categories as in the picture below, is their an easy way to do this?
CodePudding user response:
I suppose the easiest way to do this is to create a little data frame from your labels:
lab_df <- stack(data.frame(situation_A, situation_B, situation_C,
situation_D, situation_E))
lab_df$values <- cut(lab_df$values, c(0, 50, 100, 150, 200, 250, 3000))
lab_df$y <- c(300, 600, 600, 600, 750) # Manually choose y position
So then you only need add a single geom_label
call to your plot code:
dat %>%
as_tibble() %>%
ggplot(aes(x = group_size))
geom_col(aes(y = group_sum), position = "identity", color = "red",
fill = "transparent")
geom_label(
data = dat %>% distinct(group_size, .keep_all = TRUE),
mapping = aes(y = group_sum, label = group_sum),
color = "red"
)
geom_col(aes(y = count * 10), position = "identity", color = "blue",
fill = "transparent")
geom_label(
data = dat %>% distinct(count, .keep_all = TRUE),
mapping = aes(y = count * 10, label = count),
color = "blue"
)
geom_label(data = lab_df, aes(x = values, y = y, label = ind),
label.padding = unit(4, "mm")
)
scale_y_continuous(sec.axis = sec_axis(trans = ~ . / 10, name = "Count"))