I have a list of dataframes. It looks something like this:
df1 <- data.frame(Var1 = c(1, 7, 9, 4, 2),
Var2 = c(7, 2, 4, 4, 3),
Var3 = c(3, 6, 2, 0, 8))
df2 <- data.frame(Var1 = c(5, 6, 2, 2, 1),
Var2 = c(8, 6, 6, 7, 4),
Var3 = c(9, 0, 1, 3, 4))
df3.wxyz <- data.frame(Var1 = c("w", "x", "y", "z", 3, 7, 3, 6, 6),
Var2 = c(NA, NA, NA, NA, 7, 5, 8, 0, 2),
Var3 = c(NA, NA, NA, NA, 3, 3, 4, 1, 9))
df4 <- data.frame(Var1 = c(2, 7, 2, 4, 8),
Var2 = c(8, 3, 1, 7, 3),
Var3 = c(9, 1, 1, 6, 5))
df5.wxyz <- data.frame(Var1 = c("w", "x", "y", "z", 2, 7, 3, 1, 6),
Var2 = c(NA, NA, NA, NA, 7, 4, 8, 1, 9),
Var3 = c(NA, NA, NA, NA, 8, 0, 4, 1, 2))
df.list <- list(df1, df2, df3.wxyz, df4, df5.wxyz)
names(df.list) <- c("df1", "df2", "df3.wxyz", "df4", "df5.wxyz")
I would like to remove the first 4 rows of df3.wxyz
and df5.wxyz
from the list of dataframes as those contain information that I do not need. What I've tried is the following code, but instead of only removing the first 4 rows in df3.wxyz
and df5.wxyz
, it is removing the first 4 rows from every dataframe in my list. I'm not sure what the issue is.
df.list <- lapply(df.list, function(i){
ifelse(grepl("wxyz", names(df.list)), i <- i[-c(1:4), ], df.list)
i
})
This is what I would like to achieve:
df1 <- data.frame(Var1 = c(1, 7, 9, 4, 2),
Var2 = c(7, 2, 4, 4, 3),
Var3 = c(3, 6, 2, 0, 8))
df2 <- data.frame(Var1 = c(5, 6, 2, 2, 1),
Var2 = c(8, 6, 6, 7, 4),
Var3 = c(9, 0, 1, 3, 4))
df3.wxyz <- data.frame(Var1 = c(3, 7, 3, 6, 6),
Var2 = c(7, 5, 8, 0, 2),
Var3 = c(3, 3, 4, 1, 9))
df4 <- data.frame(Var1 = c(2, 7, 2, 4, 8),
Var2 = c(8, 3, 1, 7, 3),
Var3 = c(9, 1, 1, 6, 5))
df5.wxyz <- data.frame(Var1 = c(2, 7, 3, 1, 6),
Var2 = c(7, 4, 8, 1, 9),
Var3 = c(8, 0, 4, 1, 2))
df.list <- list(df1, df2, df3.wxyz, df4, df5.wxyz)
names(df.list) <- c("df1", "df2", "df3.wxyz", "df4", "df5.wxyz")
CodePudding user response:
You can try,
df.list[grepl('wxyz', names(df.list))] <- lapply(df.list[grepl('wxyz', names(df.list))], na.omit)
CodePudding user response:
You can try na.omit
like below
> Map(na.omit,df.list)
$df1
Var1 Var2 Var3
1 1 7 3
2 7 2 6
3 9 4 2
4 4 4 0
5 2 3 8
$df2
Var1 Var2 Var3
1 5 8 9
2 6 6 0
3 2 6 1
4 2 7 3
5 1 4 4
$df3.wxyz
Var1 Var2 Var3
5 3 7 3
6 7 5 3
7 3 8 4
8 6 0 1
9 6 2 9
$df4
Var1 Var2 Var3
1 2 8 9
2 7 3 1
3 2 1 1
4 4 7 6
5 8 3 5
$df5.wxyz
Var1 Var2 Var3
5 2 7 8
6 7 4 0
7 3 8 4
8 1 1 1
9 6 9 2