Here is my issue: My dataframe has multiple events (events1 to events4, below) where the end of follow-up is time to ANY event. I converted this dataframe from wide to long format using survSplit. survSplit seems to only handle one event type at a time so I have decided to do it manually using a nested ifelse statement which seems to work until I want do the same operation in a for loop that will go from event column to event column (my real dataset has 33 outcome types). The loop fails and gives the following error message:
Error: Assigned data value
must be compatible with existing data.
x Existing data has 12 rows.
x Assigned data has 0 rows.
i Only vectors of size 1 are recycled.
Run rlang::last_error()
to see where the error occurred.
In addition: Warning message:
Unknown or uninitialised column: event
.
install.packages("survival")
install.packages("dplyr")
library(survival)
library(dplyr)
cutpoints.l <- c(1.25)
f12 <- data.frame(id = 1:6,
next.ivl= c(22.348, 1.837, 2.051,1.782,1.692, 1.730),
event1 = c(0,1,0,0,1,0),
event2 = c(1,0,0,0,0,1),
event3 = c(0,0,1,1,0,0),
event4 = c(0,0,0,0,0,0),
enter= rep(0,6),
end=c(22.348, 1.837,2.051,1.782,1.629,1.730))
f12.split <- survSplit(Surv(next.ivl,event1)~.,f12,
cut = cutpoints.l,
event = "event1",
start = "enter",
end = "next.ivl",
episode = "ivl")
f12.split <- f12.split %>%
group_by(id) %>%
mutate(n = ifelse(row_number() == 1, 1, 0))%>%
mutate(N = ifelse(row_number() == n(), 1, 0))
events<-grep("event", colnames(f12.split), value = TRUE)
for (event in events) {
print(event)
f12.split$event<-ifelse(f12.split$N==1 & f12.split$event==1, ifelse(f12.split$n==1 &
f12.split$event==1,0,1),0)
}
CodePudding user response:
It sounds like you want to reshape just the event*
columns without doing the rest. This can be done directly using tidyr::pivot_longer
or reshape2::melt
:
tidyr::pivot_longer(f12, starts_with("event"), names_to = "event")
# # A tibble: 24 x 6
# id next.ivl enter end event value
# <int> <dbl> <dbl> <dbl> <chr> <dbl>
# 1 1 22.3 0 22.3 event1 0
# 2 1 22.3 0 22.3 event2 1
# 3 1 22.3 0 22.3 event3 0
# 4 1 22.3 0 22.3 event4 0
# 5 2 1.84 0 1.84 event1 1
# 6 2 1.84 0 1.84 event2 0
# 7 2 1.84 0 1.84 event3 0
# 8 2 1.84 0 1.84 event4 0
# 9 3 2.05 0 2.05 event1 0
# 10 3 2.05 0 2.05 event2 0
# # ... with 14 more rows
reshape2::melt(f12, id.vars = c("id", "next.ivl", "enter", "end"), variable.name = "event")
# id next.ivl enter end event value
# 1 1 22.348 0 22.348 event1 0
# 2 2 1.837 0 1.837 event1 1
# 3 3 2.051 0 2.051 event1 0
# 4 4 1.782 0 1.782 event1 0
# 5 5 1.692 0 1.629 event1 1
# 6 6 1.730 0 1.730 event1 0
# 7 1 22.348 0 22.348 event2 1
# 8 2 1.837 0 1.837 event2 0
# 9 3 2.051 0 2.051 event2 0
# 10 4 1.782 0 1.782 event2 0
# 11 5 1.692 0 1.629 event2 0
# 12 6 1.730 0 1.730 event2 1
# 13 1 22.348 0 22.348 event3 0
# 14 2 1.837 0 1.837 event3 0
# 15 3 2.051 0 2.051 event3 1
# 16 4 1.782 0 1.782 event3 1
# 17 5 1.692 0 1.629 event3 0
# 18 6 1.730 0 1.730 event3 0
# 19 1 22.348 0 22.348 event4 0
# 20 2 1.837 0 1.837 event4 0
# 21 3 2.051 0 2.051 event4 0
# 22 4 1.782 0 1.782 event4 0
# 23 5 1.692 0 1.629 event4 0
# 24 6 1.730 0 1.730 event4 0