Home > Software design >  Counts of numbers of date for service use in each month
Counts of numbers of date for service use in each month

Time:03-04

I'm currently re-arranging a health service data. My data frame includes the start and end dates of service use for each individuals

id <- c("A", "A", "B")
start <- c("2018-04-01", "2019-04-02", "2018-09-01")
end <- c("2019-04-01", "2019-04-05", "2018-09-02")
df <- data.frame(id, start, end)

 id        start          end
  A    2018-04-01   2019-04-01
  A    2019-04-02   2019-04-05
  B    2018-09-01   2018-09-02

I want to do the following things: (1) calculate the number of dates in each month for each service use; (2) calculate dates of service use for each individual; (3) construct new columns for all possible months; and (4) generate a new data frame. The ultimate goal is to construct the following data frame:

 id  2018_Jan 2018_Feb 2018_Mar 2018_Apr 2018_May 2018_Jun ... 2018_Sep ... 2019_Sep
  A     0        0         0        30       31       31   ...     30   ...     1
  B     0        0         0         0        0        0   ...      1   ...     0

The lubridate package and function command should be helpful in this. My question is similar to this post Count the number of days in each month of a date range, where it counted the number of days in each month. However, I'm not sure how to apply it to formulate the data frame that I want.

I will be really grateful for your help on this.

CodePudding user response:

Here's one way. First I make all combinations of id, and year-months from jan 2018 to dec 2019. Then, I summarize the data by id and year-month. Finally, join the two datasets together (to make sure you capture the months where nothing happened) and then pivot wider.

library(dplyr)
#> 
#> Attaching package: 'dplyr'
#> The following objects are masked from 'package:stats':
#> 
#>     filter, lag
#> The following objects are masked from 'package:base':
#> 
#>     intersect, setdiff, setequal, union
library(tidyr)
library(lubridate)
#> 
#> Attaching package: 'lubridate'
#> The following objects are masked from 'package:base':
#> 
#>     date, intersect, setdiff, union
id <- c("A", "A", "B")
start <- c("2018/04/01", "2019-04-02", "2018-09-01")
end <- c("2019-04-01", "2019-04-05", "2018-09-02")
df <- data.frame(id, start, end)

all_dates <- expand.grid(id = unique(df$id), 
                         month = c("Jan", "Feb", "Mar", "Apr", "Jun", "Jul", "Aug", "Sep", "Oct", "Nov", "Dec"), 
                         year = 2018:2019) %>% 
  mutate(yrmo = paste(year, month, sep="_")) %>% 
  select(id, yrmo)

df <- df %>% 
  mutate(start = ymd(start), 
         end = ymd(end)) %>% 
  rowwise() %>% 
  summarise(id = id, obs = 1, dates = seq(start, end, by=1)) %>% 
  mutate(yrmo = paste(year(dates), month(dates, label=TRUE, abbr=TRUE), sep="_")) %>% 
  group_by(id, yrmo) %>% 
  summarise(obs = n()) %>% 
  full_join(., all_dates) %>% 
  mutate(yrmo = factor(yrmo, levels = all_dates$yrmo[which(all_dates$id == "A")])) %>% 
  arrange(id, yrmo) %>%
  pivot_wider(names_from="yrmo", values_from="obs") %>% 
  mutate(across(everything(), ~ifelse(is.na(.x), 0, .x)))
#> `summarise()` has grouped output by 'id'. You can override using the `.groups`
#> argument.
#> Joining, by = c("id", "yrmo")

df
#> # A tibble: 2 × 24
#> # Groups:   id [2]
#>   id    `2018_Jan` `2018_Feb` `2018_Mar` `2018_Apr` `2018_Jun` `2018_Jul`
#>   <chr>      <dbl>      <dbl>      <dbl>      <dbl>      <dbl>      <dbl>
#> 1 A              0          0          0         30         30         31
#> 2 B              0          0          0          0          0          0
#> # … with 17 more variables: `2018_Aug` <dbl>, `2018_Sep` <int>,
#> #   `2018_Oct` <dbl>, `2018_Nov` <dbl>, `2018_Dec` <dbl>, `2019_Jan` <dbl>,
#> #   `2019_Feb` <dbl>, `2019_Mar` <dbl>, `2019_Apr` <dbl>, `2019_Jun` <dbl>,
#> #   `2019_Jul` <dbl>, `2019_Aug` <dbl>, `2019_Sep` <dbl>, `2019_Oct` <dbl>,
#> #   `2019_Nov` <dbl>, `2019_Dec` <dbl>, `NA` <dbl>

Created on 2022-03-04 by the reprex package (v2.0.1)

CodePudding user response:

Here's a {tidyverse} solution. This uses dplyr::summarize() to generate the full range of dates for each row and lubridate::floor_date(unit = "month") to convert these to months. Then I count() up month-days for each id and pivot_wider().

library(tidyverse)
library(lubridate)

month_counts <- df %>%
  mutate(across(start:end, ymd)) %>%
  group_by(id, obs = row_number()) %>%
  summarize(
    month = floor_date(seq(start, end, by = 1), unit = "month"),
    .groups = "drop"
  ) %>% 
  count(month, id) %>% 
  mutate(month = strftime(month, "%Y_%B")) %>% 
  pivot_wider(
    names_from = month,
    values_from = n,
    values_fill = 0
  )

month_counts

# # A tibble: 2 x 14
#  id    `2018_April` `2018_May` `2018_June` `2018_July` `2018_August`
# <chr>        <int>      <int>       <int>       <int>         <int>
# 1 A               30         31          30          31            31
# 2 B                0          0           0           0             0
# # ... with 8 more variables: `2018_September` <int>, `2018_October` <int>,
# #   `2018_November` <int>, `2018_December` <int>, `2019_January` <int>,
# #   `2019_February` <int>, `2019_March` <int>, `2019_April` <int>

I wasn't sure if you actually want empty columns for months with no observations, as in your example. If so, the following wraps tidyr::complete() in a function that imputes all months in all years in the data:

complete_months <- function(.data, month, ..., fill = list()) {
  month <- pull(.data, {{ month }})
  firstday <- floor_date(min(month, na.rm = TRUE), unit = "year")
  lastday <- ceiling_date(max(month, na.rm = TRUE), unit = "year") - 1
  allmonths <- seq(firstday, lastday, by = "month")
  complete(.data, month = allmonths, ..., fill = fill)
}

month_counts <- df %>%
  mutate(across(start:end, ymd)) %>%
  group_by(id, obs = row_number()) %>%
  summarize(
    month = floor_date(seq(start, end, by = 1), unit = "month"),
    .groups = "drop"
  ) %>% 
  count(month, id) %>% 
  complete_months(month, id, fill = list(n = 0)) %>% 
  mutate(month = strftime(month, "%Y_%B")) %>% 
  pivot_wider(
    names_from = month,
    values_from = n
  )

month_counts

# # A tibble: 2 x 25
#   id    `2018_January` `2018_February` `2018_March` `2018_April` `2018_May`
#   <chr>          <int>           <int>        <int>        <int>      <int>
# 1 A                  0               0            0           30         31
# 2 B                  0               0            0            0          0
# # ... with 19 more variables: `2018_June` <int>, `2018_July` <int>,
# #   `2018_August` <int>, `2018_September` <int>, `2018_October` <int>,
# #   `2018_November` <int>, `2018_December` <int>, `2019_January` <int>,
# #   `2019_February` <int>, `2019_March` <int>, `2019_April` <int>,
# #   `2019_May` <int>, `2019_June` <int>, `2019_July` <int>, `2019_August` <int>,
# #   `2019_September` <int>, `2019_October` <int>, `2019_November` <int>,
# #   `2019_December` <int>
  • Related