Using make_csv_dataset
we could read an CSV file to tensorflow dataset object
csv_data = tf.data.experimental.make_csv_dataset(
"./train.csv",
batch_size=8190,
num_epochs=1,
ignore_errors=True,)
now csv_data
is of type tensorflow.python.data.ops.dataset_ops.MapDataset
. How can I find the size or shape of csv_data
.
print(csv_data)
give column information as below
<MapDataset element_spec={'title': TensorSpec(shape=(None,), dtype=tf.string, name=None), 'user_id': TensorSpec(shape=(None,), dtype=tf.string, name=None)}>
of course getting the could from train_recom.csv
using and pandas.read_csv
is on option, just was curious if tensorflow has anything easier.
CodePudding user response:
If you want to get the size of your batched dataset without any preprocessing steps, try:
import pandas as pd
import tensorflow as tf
df = pd.DataFrame(data={'A': [50.1, 1.23, 4.5, 4.3, 3.2], 'B':[50.1, 1.23, 4.5, 4.3, 3.2], 'C':[5.2, 3.1, 2.2, 1., 3.]})
df.to_csv('data1.csv', index=False)
df.to_csv('data2.csv', index=False)
dataset = tf.data.experimental.make_csv_dataset(
"/content/*.csv",
batch_size=2,
field_delim=",",
num_epochs=1,
select_columns=['A', 'B', 'C'],
label_name='C')
dataset_len = len(list(dataset.map(lambda x, y: (x, y))))
print(dataset_len)
5
If you want to know how many samples you have altogether, try unbatch
:
dataset_len = len(list(dataset.unbatch().map(lambda x, y: (x, y))))
print(dataset_len)
# 10